Video and Image Analytics for Marine Environments (VIAME)
An Open-Source, Do-It-Yourself AI Toolkit

Matt Dawkins (Speaker), Senior R&D Engineer, matt.dawkins@kitware.com

Other Developers: Aashish Chaudhary, Jon Crall, Matthew Woehlke, Bryon Lewis, Jacob Nesbitt, Brandon Davis, Neal Siekierski, Anthony Hoogs, Linus Sherrill, Matt Brown, Betsy McPhail, Kyle Edwards, Matt Leotta, Rusty Blue

NOAA: Benjamin Richards, Dvora Hart, George (Randy) Cutter, Elizabeth Clarke, Charles Thompson, Kresimir Williams, Bill Michaels, Erin Moreland, Katie Sweeney, Abigail Powell
CFF: Liese Siemann
What is VIAME?

- A do-it-yourself (DIY) AI toolkit which can be applied to multiple types of imagery or video
- Can be run by people with no programming or machine learning background in both web and desktop interfaces
- Released as fully open-source with a permissive license, see viametoolkit.org
- Specializations to maritime processing such as motion fusion, stereo measurement, image enhancement, and object tracking which other software (e.g. Amazon SageMaker) lack
Downward-Facing Underwater Cameras (AUVs, Trawls)

Source: HabCam (NEFSC, CFF, WHOI)

Source: NWFSC AUV Data

Source: UK P. Maximus Images
Aerial Surveys (Manned Fixed-Wings, UAVs)

Sources: University of Alaska Data

Scene Segmentation

Source: AKFSC MML Stellar Sea Lion

Source: AKFSC MML Arctic Seal

Source: NEFSC Gray Seal

Source: SWFSC

Source: NEFSC Harbor Seal

Source: AKFSC MML Stellar Sea Lion

Source: SWFSC Penguin Aerial Data

Sources: University of Alaska Data
Scene Segmentation
Outward Facing Cameras (Underwater, Ship-Based)

Source: PIFSC EM Data

Source: PIFSC MOUSS

Source: SWFSC Penguin Cam

Source: SEFSC Quadcam

Source: PIFSC MOUSS

Source: PIFSC EM Data
Example Platforms
NMFS Strategic Initiative on Automated Image Analysis

Mission: Develop guidelines, set priorities, and fund projects to develop broad-scale, standardized, and efficient automated analysis of still and video imagery for use in underwater stock assessment

Benjamin Richards (chair)
NOAA Pacific Islands Fisheries Science Center

Alexandra Branzan Albu
University of Victoria

Elizabeth Clarke
NOAA Northwest Fisheries Science Center

George “Randy” Cutter
NOAA Southwest Fisheries Science Center

Duane Edgington
Monterey Bay Aquarium Research Institute

Dvora Hart
NOAA Northeast Fisheries Science Center

Anthony Hoogs
Kitware, Inc.

David Kriegman
University of California, San Diego

Clay Kunz
Google

Michael Piacentino
SRI International

Lakshman Prasad
Los Alamos National Laboratory

Charles Thompson
NOAA Southeast Fisheries Science Center

Kresimir Williams
NOAA Alaska Fisheries Science Center

Other Funded Initiatives

http://coralnet.ucsd.edu, D. Kriegman, UCSD

Funded VIAME and CoralNet from 2015 to present

2019 Department of Commerce Gold Medal
Awarded to NOAA Members of AIASI for VIAME and CoralNet
Kitware

- Collaborative software R&D: algorithms & applications, image & data analysis, support & training
- Best known for open source toolkits and applications
- 150+ employees:
 $\frac{1}{3}$ masters
 $\frac{1}{3}$ PhD
- Founded in 1998
- Offices in Albany, NY; Chapel Hill, NC; Santa Fe, NM; Minneapolis, MN; Arlington, VA; Lyon, France
Base classes for common operations (image filters, object detectors, trackers, ...)

Derivation of base classes in C/C++, CUDA, Python, or Matlab

Backend coded in C++ for efficiency, automatically multi-threaded
Three Detection Workflows

Input Data

Running Existing Detectors and Trackers (Traditional or Deep)

New Detector Training via Deep Learning

New Classifier Training via IQR

New Annotations or Annotation Correction
 Fix Boxes, Labels, or Masks

Higher-Level Analytics
 (Automated Detection Quantities, Heatmaps, Occurrence vs Time Plots)
Types of Annotation and Detection Models

- **Box-Level**
- **Frame-Level**
- **Pixel-Level**
- **Keypoints**
VIAME contains multiple baseline general purpose detectors from the larger computer vision community for wide applicability, but then specializations and other functionality added specific to domains of interest.

Automatic Parameter Optimizations
• Automatically handle LR stepping based on validation loss, running multiple hyperparameter sets, and early stopping criteria
 - NetHarn: https://gitlab.kitware.com/computer-vision/netharn
• Automatically choose whether to grid detectors over image
• Utilities to turn dot annotation into boxes

Auxiliary Data Fusion
Fuse depth and motion maps into object detectors

Extra Augmentation
Selectively augment channels differently

Ensemble Classifiers
Fuse output of detectors from different frameworks

Scoring Utilities
Evaluation via ROCs, PRCs, track metrics, …
Interactive Search and Rapid Model Generation

- Generate Image Descriptors around Detections
- Query Image Archive using Image Exemplar
- Create Classifier using Interactive Query Refinement
- Run Detector and Classifier on New Images
- Data Storage via DB
- Generate Generic Object Detections
Interactive Search and Rapid Model Generation

User provides initial image query:

User corrects system returns on subsequent iterations through iterative query refinement (IQR)
Enhancement, Calibration and Depth Estimation

Work performed in conjunction with Coonamessett Farm Foundation (CFF) and NEFSC
Registration and Mosaicing

Multi-Camera and Multi-Modality Registration

Work performed in conjunction with NOAA AKFSC Marine Mammals Lab

Contact: matt.leotta@kitware.com
Object Tracking

Have integrated multiple trackers into VIAME:

- Registration-Only Based (Aerial Pinniped)
- Deep Learning Based LSTM Tracker Detector Linkers [5]
- Non-Deep Learning Kalman Filter Detector Linkers
- Single Target Trackers (e.g. SiamRPN++ [6]) for annotation assist (below)

Stereo Measurement

Method #1 - Modeled off camtrawl process (Williams et al 2010), python port of matlab code. Use centroids of smaller sides of oriented bounding boxes as head/tail positions.

Method #2 - Feature point detection using dedicated CNN keypoint detectors, either in the same network or separate dedicated network (e.g. heavily modified version of [7]).

Ongoing: collecting additional annotations.

Method #1 – Typical deep training pipeline (ResNet50 [8] – better for cases that have a lot of manual groundtruth)

Method #2 – SVM on fixed feature vector, similar to image search and rapid model generation pipeline (better for less training samples)

Embedded Processing

sUAS

VIAME Detectors

KAMERA Processing

Data Archive

Downlink

Ground Station

KAMERA GUI

Imaging Sensors

EO-IR Field of View

PI: matt.brown@kitware.com
Funded by NOAA ADAPT SBIR Phase I and NOAA AKFSC MML
Graphical User Interfaces

Web vs Desktop

- Both wrap arbitrary processing pipelines and have tracking support (split, merge)
- Web currently has better pixel classification annotation, though some in desktop
- Desktop can currently drive user initialized tracks, web can’t, though adding shortly
- Desktop currently has search and rapid model generation and multi-view display, not in web
- Normalizing features across all versions in progress
Web Application and Annotation Archive

Online Example: viame.kitware.com
Server Manages Data and Annotations

Desktop Applications
User Manages Data and Annotations

Command-Line Tools and APIs:
Full Feature Support
More Customization Ability
Useful for Embedded Platforms

Covered in Tutorial on Sept 22nd, 12 pm to 2 pm EST
Public VIAME Server

Example VIAME-Web instance: https://viame.kitware.com

Public data and annotation store provided by Kitware for:
- Storing and Sharing of Annotations and Imagery related to VIAME
- Performing Annotation
- Running Detectors on Data
- Limited Detector Training

15 Tb open training data store (raided for backup), 2 GPUs
- 3 Tb used so far, though still sorting annotations to post online
- Users can annotate data, run multiple pre-trained detectors, and (shortly) use limited training capabilities (FIFO queue on 1 GPU) for new categories

Code and docker containers: https://github.com/VIAME/VIAME-Web
Current and Future Work

- Full feature support in web GUIs, improved desktop GUIs
 - Web GUI is very focused towards object detection and tracking, adding in support for other auxiliary features, such as mosaic generation, image enhancement, etc…
 - Make cross-use of other projects at Kitware performing similar work (IARPA, DARPA, DoD)
 - Pixel-classification utility pipelines (e.g. boxes to masks)
- Additional algorithm specializations
- More documentation
- Behavior and event detection
- Acoustic data processing
- Electronic monitoring
Conclusions

- VIAME is a do-it-yourself (DIY) AI toolkit which can be applied to multiple types of imagery or video
- Can be run by people with no programming or machine learning background in both web and desktop interfaces
- Released as fully open-source with a permissive license
- Specializations to maritime processing such as motion fusion, stereo measurement, image enhancement, and object tracking which other software (e.g. Amazon SageMaker) lack
Special Thanks to:

- NOAA AIASI, NOAA AKFSC MML and CFF for funding VIAME
- Image annotators and testers across various organizations

See tutorial (Sept 22nd) and https://viametoolkit.org/ for more information

Tutorial Agenda

12:00 to 12:15 pm – VIAME Overview
 Desktop Installation
 Web vs Desktop vs APIs

12:15 to 12:45 pm – VIAME Web Edition
 Types of Annotation
 Model Training

12:45 to 1:45 pm – VIAME Desktop Edition
 Core Functionalities
 Auxiliary Features

1:45 to 2:00 pm – APIs and Configs [Advanced]

2:00 to 2:30 pm – Open Discussion