
VIAME: An Open-Source Framework for
Underwater Image and Video Analytics

1Kitware Inc., 2National Oceanic and Atmospheric Administration, 3SRI International,
4Los Alamos National Lab, 5University of Washington

Matthew Dawkins1, Linus Sherrill1, Keith Fieldhouse1, Anthony Hoogs1, Benjamin Richards2,
David Zhang3, Jon Crall1, Lakshman Prasad4, Nathan Lauffenburger2, Gaoang Wang5

Kitware Open Source Platforms

ParaView

Resonant

CMake

CDash

• KWIVER Kitware Imagery and Video
Exploitation and Retrieval

• VTK the visualization toolkit
• ParaView large data analysis & visualization

application
• ITK insight image analysis toolkit
• CMake cross-platform build system

– CDash, CTest, CPack, software process
tools

• Resonant/Girder informatics and
 information visualization
• Kiwi & VES mobile visualization
• IGSTK, CTK, vxl, Open Chemistry Project,
 VolView, tubeTk, and more…
• MIDAS for computational scientific research,

testing, and visualization

Images
&

Video

Recognition
by Function

Object
Recognition
& Matching

Content-
based

Retrieval

Event &
Activity

Recognition
Anomaly
Detection

3D Extraction,
Super-

resolution &
Compression

Detection &
Tracking

Human Activity Detection (OSD, CTTSO) and
Tracking in Wide-Area Video (AFRL)

Object and Building Recognition by
Function (DARPA)

 25+ team members
 12 PhDs
 Founded in 2007
 35+ contracts

Normalcy Modeling and Anomaly
Detection (DARPA PANDA and PerSEAS)

Football Play Recognition (DARPA CARVE)

Complex Event Recognition in
Internet Videos (GENIE)

Content-based
Video Retrieval

by Actions
(DARPA VIRAT)

3D model-based video compression (DARPA) and super-
resolved 3D reconstruction (DARPA)

Threat Detection in Video (DARPA)

Wide-Area Motion Imagery Event, Anomaly and Activity
Detection (OSD Data to Decisions, DARPA PerSEAS)

Dr. Anthony Hoogs
anthony.hoogs@kitware.com
518-881-4910

mailto:anthony.hoogs@kitware.com

VIAME

• Video and Image
Analytics for the Marine
Environment

• Goal: Develop an open-
source software platform
for NMFS image and
video analysis

– In close coordination with
NOAA community

4

https://github.com/Kitware/VIAME

Lots of Data, Analytics and Users
Algorithms

End Users/Analysts
PIFSC

NWFSC

AFSC

SWFSC NEFSC
SEFSC

SRI

LANL

Kitware
MBARI

UCSD

UVIC

WHOI

Video and Image Analytics for the Marine Environment

Vision Research
 Community

Oceanographic
 Community

Current Image/Video Analytics
Capability Primary data source POC

Stereo
calibrat
ion

Stereo
process
ing Video

Color,
contrast
correction

scallop
detecti
on

fish
detection

fish
length,
sizing

fish
tracki
ng

fish
classifica
tion

anoma
ly det.

habitat
classifica
tion

image
segmenta
tion

NW SC CamTrawl Cam Trawl
Willia
ms yes yes 4 Hz

no,
grayscale yes automatic yes yes

ROV video fish
detection and tracking SWFSC ROV video Cutter no no 30 Hz yes

yes, DPM
(UW) no

yes
(UW
studen
t) desired desired

ROV stereo fish
measurement

SWFSC ROV GigE
stereo Cutter yes yes

2-4
Hz yes no manual no

WHOI/NEFSC scallop
detector HABCAM towed rig Dvora yes yes no yes yes
RPI/Kitware scallop
detector HABCAM towed rig Hoogs no no no yes yes

SRI fish detection,
classification, size

PI FSC
MOUSS/BotCam

Ben/M
ike

yes,
accept
cal files yes 30 Hz

no,
grayscale yes yes yes

SEFSC stereo proc
Drop cams from
SEFSC

Thomp
son yes yes yes

yes, basic
backgroun
d manual no no

Toyon SBIR I
Drop cams from
SEFSC

Thomp
son yes yes yes

yes, basic
HOG manual yes yes

LANL segmentation
and shape analysis HABCAM towed rig

Laksh
man no yes no no yes yes no no yes

yes
(image
) Yes

yes
(polygonal
)

Toyon SBIR II
Still Images AUV,
drop, towed Clarke yes yes no yes (Hanu) yes yes no yes

WHOI/NEFSC habitat
classifier HABCAM towed rig Dvora yes yes no yes yes
NWFSC clustering AUV and MOUSS Clarke no no no yes partially

Green

well-implemented; quantified, comparative
performance assessment; ready for
integration Yellow

Existing implementation as
mature research code; some
performance quantification Red

preliminary research code
with ongoing work against
major problems Gray

idea or concept; no
implementation

VIAME High-Level Components

Multi-Processing Pipeline Framework

Data Abstraction and Conversion
(not a native DB)

Evaluation and
Quantification Tools

Web based
services and tools

Visualization Tools

Goal: Object Detection

8

Goal: Object Detection Viewing and Adjudication

9

Goal: Object Tracking

10

Goal: Fish Measurement

11

Goal: Image and Video Search

12

VIAME System Components

13

Fletch

Builds common computer
vision dependencies

VIAME-Core

Contains domain-specific algorithms in
“super-build” comprised of multiple projects

and the above.

Front and end caps isolate
pipeline elements from
integration requirements.

Video
Library

Video
Stream

Camera API

Messaging

Data
Store

Video
Stream

Archive Archive

Sprokit/KWIVER

Connects up different algorithm nodes in runnable pipelines.
Nodes can be implemented in C++, Python, or Matlab.

CMake Build System
Why?

• Cross-platform as long as code supports it
• Underlying pipeline code written primarily in C/C++
• Already used by several popular vision projects (OpenCV, VXL, Caffe)
• Free to use
• Kitware

Fundamentals: https://cmake.org/runningcmake/
 14

https://cmake.org/runningcmake/

Git Version Control

Alternatives: Use Nothing, Google Drive, CVS, SVN, Mercurial

Why Git? Like CMake, also used by many other vision toolkits. Slightly
harder to learn than SVN, but more extensible, distributed.

Fundamentals: https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
 15

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

Super-Build Comprised of Multiple Projects

16

KWIVER.org
Kitware Image and Video Exploitation and
Retrieval Toolkit
An Open Source, production-quality video analytics toolkit

 Motion-imagery Aerial
Photogrammetry Toolkit

Hierarchical SBA

Homography-Driven Loop-Closure

SBA with
frame-to-frame
 tracking only

SBA with
loop-closure

Homography sequence
with loop detected

91 Frames 4494 Frames

Social Multimedia Query ToolKit

Streaming FMV

Archive Query

VIBRANT:
Video and Image-Based
Retrieval and Analysis

Toolkit

We hope to establish an open-
source community for video
analytics research and
development 17

KWIVER.org
• Source code repositories maintained at GitHub
• Current toolkits available:

– Motion-imagery Aerial Photogrammetry Toolkit for video stabilization and online
bundle adjustment MAP-TK

– Social Multimedia Query Toolkit for visual context extraction and querying for
social multimedia SMQTK

– Stream Processing Toolkit to facilitate multi-state, pipelined processing of data
streams Sprokit

– Common data structures and abstractions for computer vision and machine
learning systems VITAL

– GPU acceleration of core vision algorithms using OpenCL VisCL
– GUIs and sophisticated visualization tools for content automatically extracted

from video, based on VTK ViVIA
– Detection and tracking of movers in video VIBRANT
– CMake tools to set up complex build environments and dependencies Fletch

18

Sprokit – A Framework for Streaming
Data Processing

• What is Sprokit?
– Plugin-based streaming data processing engine on which to build

modular streaming data processing applications
(especially video processing applications).

• What does Sprokit do?
– Chains processing elements into a directed acyclic graph (DAG)
– Executes a constructed pipeline on streaming data (e.g. video)
– Provides dynamic construction/configuration via configuration files
– Supports algorithms written in C++, Matlab, and Python

• Why was Sprokit developed?
– To build complex streaming algorithms from simple components
– To replace an older, much more restrictive, pipeline framework
– Because existing open source frameworks (e.g. Gstreamer, Ecto,

etc.) did not meet all requirements in the list above.

Swappable Front and End Caps

20

Video
Library

Video
Stream

Camera API

Messaging

Data
Store

Video
Stream

Archive Archive

End caps and front caps isolate pipeline
elements from integration requirements.
Data from a variety of input sources is
normalized, analytics are sent to a variety
of destinations. Processing elements
merely consume their inputs and produce
their outputs.

Individual Processing Nodes

Input port Optional input port

Output port Optional output port

Multiple outgoing edges allowed

Only single input edge allowed per port

Output port

Input port

Tunable configuration
parameters

Pipeline construction
parameters

Configure

Initialize

Flush

Reset
Algorithm

Step
Read from input ports

Write to output ports

Process
Read Image

Process
Draw Boxes

Process
Object Detector

Process
Display Image

Process
Write Detections

Detector
Algorithm

Reader Algorithm

Writer Algorithm

Processes can wrap
algorithms

Processes can also
contain the

implementation

VITAL: Common Data Structures for Edges
• Normalize and standardize data structures to facilitate integration across

different algorithms
• Isolate system integration issues by providing test fixtures for remote

development
• Encourage collaboration by providing a framework for data sharing and

replay
• Encourage modular development with pipeline based architecture with

common data structured passed on edges

22

Process
Read Image

Process
Draw Boxes

Process
Object Detector

Process
Display Image

Process
Write Detections

Detector
Algorithm

Reader Algorithm

Writer Algorithm

Processes can wrap
algorithms

Processes can also
contain the

implementation

Images

Object Detections

VITAL: Common Example Types

23 C++ but with python (and limited Matlab) bindings

Simple Pipeline Example
=======================================
process input
 :: frame_list_input
 :image_list_file input_files.txt
 :frame_time .3333
 :image_reader:type ocv

=======================================
process detector
 :: image_object_detector
 :type scallop_tk_detector
 :scallop_tk_detector:config_file config_location

=======================================
process draw
 :: draw_detected_object_boxes
 :default_line_thickness 3

=======================================
process disp
 :: view_image
 :annotate_image true
 :pause_time 0 # 1.0
 :title NOAA images

====================================
global pipeline config

config _pipeline:_edge
 :capacity 10

====================================
connections
connect from input.image
 to detector.image

connect from detector.detected_object_set
 to draw.detected_object_set
connect from input.image
 to draw.image

connect from detector.detected_object_set
 to archive.detected_object_set

connect from input.timestamp
 to disp.timestamp
connect from draw.image
 to disp.image

Process Definition

Input port Optional input port

Output port Optional output port

Multiple outgoing edges allowed

Only single input edge allowed per port

Output port

Input port

Tunable configuration
parameters

Pipeline construction
parameters

Configure

Initialize

Flush

Reset
Algorithm

Step
Read from input ports

Write to output ports

Two separate ways to define:

• Manual: User specifies all input/output ports and each rectangular block in
the above (step, configure, initialize, etc…)

• Automatic: Only need to define single function for existing base class APIs
with process wrappings
– For example, object_detector: image in, detections out

Algorithm Concepts
• Application uses abstract algorithm type using a

polymorphic model
• Instantiates an implementation based on config
• Implementations are dynamically loadable
• New implementations can be easily added

Abstract
Interface

SWFSC
Implementation

NWFSC
Implementation

Matlab
Implementation

Automatic Implementation Method:
Example Base Classes

kwiver/vital/algos/image_object_detection.h kwiver/sprokit/core/image_object_detector_process.h

Example Algorithms

28

SRI: BenthosDetect

Kitware: ScallopTK

LANL: ScallopFinder

NOAA/UW: FishRuler

Example Algorithms (cont.)
Faster R-CNN

YOLOv2

Burn-Out

Baseline Tracker – Simple Tracker

30

Pipeline performs differencing on CNN intermediate
features derived from bounding boxes around detections

Baseline Tracker – Tracking the Untrackable

31

“Tracking the Untrackable: Learning to track multiple cues with long-term
dependencies” Sadeghian et al. ICCV 2017

Implemented in PyTorch, Integrated into VIAME

Algorithm Usage
• Application uses abstract algorithm(s) via pointer to base class, can either be

used in pipeline files or C++ code. Pipelines can also be embedded in C++
code.

• Configuration info specifies algorithm to use

• High level code is unchanged as different algorithm implementations are used

namespace algo = kwiver::vital::algo;
algo::image_io_sptr m_image_reader;
kwiver::vital::config_block_sptr algo_config = get_config(); // config

// validate config parameters
if (! algo::image_io::check_nested_algo_configuration("image_reader", algo_config))
{ // Handle error
}

// instantiate image reader and converter based on config type
algo::image_io::set_nested_algo_configuration("image_reader", algo_config, m_image_reader);
if (! m_image_reader)
{ // Handle error
}

// Read an image
kwiver::vital::image_container_sptr img_c;
img_c = m_image_reader->load(resolved_file_name);

Standalone Utilities: GUIs for Imagery

33

GUIs for Displaying Videos and Annotations

34

Evaluation and Scoring
• VIAME includes an extensive scoring capability for

measuring detection, tracking, and classification on images
or video

• Existing annotations can be translated to VIAME-
compatible formats

35

Model Training
Old: New:

36
pipeline_runner –p training_pipeline.pipe

Interactive Query Refinement:
A User-Driven Search Work Flow

+ : good for similarity search
- : no semantic queries

Visual Content
Understanding

In
pu

t
D

at
a

Indexing

User Query (examples)
e.g., A set of images

Search &
Refinement

Refinement (IQR)

1

2

3

Input
Videos

Input
Videos

Images,
Videos, etc.

Search
Results

DB DB DB

Low-level Feature
Extraction and Encoding

Low-level Feature
Extraction and Encoding

Low-level Feature
Extraction and Encoding

Demo IQR Interface Example

38

Upload
Positive

Examples
From Disk

(re)Search
Data set

Mark Items
Relevant or

Not Relevant

Refine
Search
Order

Export
Annotations
for Classifier
Constructio

n

Start Over

IQR Example

39

Start IQR with a
single positive
exemplar

Dataset
contains 832
images with 55-
100 images per
type.

Use CAFFE
AlexNet Layer 7
as an image
descriptor

Random Selections from Leeds Butterfly Dataset

40

Josiah Wang, Katja Markert, and Mark Everingham
Learning Models for Object Recognition from Natural Language Descriptions
In Proceedings of the 20th British Machine Vision Conference (BMVC2009)

Results from Single Exemplar

41

One Refinement Based on Adjudications from
Previous Slide

42

Ongoing and Future Developments

• Improved video handling
• Improved detection and tracking
• Additional stereo processing

– Calibration
– Dense 3D reconstruction

• More integrated analytics
– Anomaly detection and clustering
– Habitat classification

• Large-scale visualization
• Extend deep learning integration
• Database extensions
• Make system easier to use
• Documentation

43

Demo

VIAME Resources

• VIAME is publicly-available, open-source
software
– viametoolkit.org/
– Community contributions are highly encouraged, both

framework additions and analytics
• Multiple benthic datasets previews are available

at marineresearchpartners.com/nmfs_aiasi/Home.html

45

http://viametoolkit.org/
http://marineresearchpartners.com/nmfs_aiasi/Home.html

Thank you NOAA!

Code Repository: https://github.com/Kitware/VIAME

Initial development and testing of VIAME was funded by the NOAA Fisheries Strategic Initiative on Automated
Image Analysis. The findings and conclusions in the paper are those of the authors and do not necessarily
represent the views of the National Marine Fishery Service, NOAA, or the government of the United States. The
use of trade, firm, or corporation names in this publication is for the convenience of the reader and does not
constitute an official endorsement or approval of any product or service to the exclusion of others that may be
suitable.

https://github.com/Kitware/VIAME

	VIAME: An Open-Source Framework for Underwater Image and Video Analytics
	Kitware Open Source Platforms
	Slide Number 3
	VIAME
	Lots of Data, Analytics and Users
	Current Image/Video Analytics
	VIAME High-Level Components
	Goal: Object Detection
	Goal: Object Detection Viewing and Adjudication
	Goal: Object Tracking
	Goal: Fish Measurement
	Goal: Image and Video Search
	VIAME System Components
	CMake Build System
	Git Version Control
	Super-Build Comprised of Multiple Projects
	KWIVER.org
	KWIVER.org
	Sprokit – A Framework for Streaming Data Processing
	Swappable Front and End Caps
	Individual Processing Nodes
	VITAL: Common Data Structures for Edges
	VITAL: Common Example Types
	Simple Pipeline Example
	Process Definition
	Algorithm Concepts
	Automatic Implementation Method: �Example Base Classes
	Example Algorithms
	Example Algorithms (cont.)
	Baseline Tracker – Simple Tracker
	Baseline Tracker – Tracking the Untrackable
	Algorithm Usage
	Standalone Utilities: GUIs for Imagery
	GUIs for Displaying Videos and Annotations
	Evaluation and Scoring
	Model Training
	Interactive Query Refinement:�A User-Driven Search Work Flow
	Demo IQR Interface Example
	IQR Example
	Random Selections from Leeds Butterfly Dataset
	Results from Single Exemplar
	One Refinement Based on Adjudications from Previous Slide
	Ongoing and Future Developments
	Demo
	VIAME Resources
	��Thank you NOAA!�����Code Repository: https://github.com/Kitware/VIAME������

