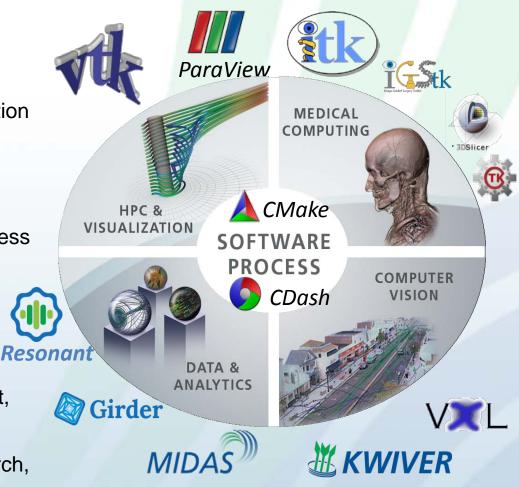
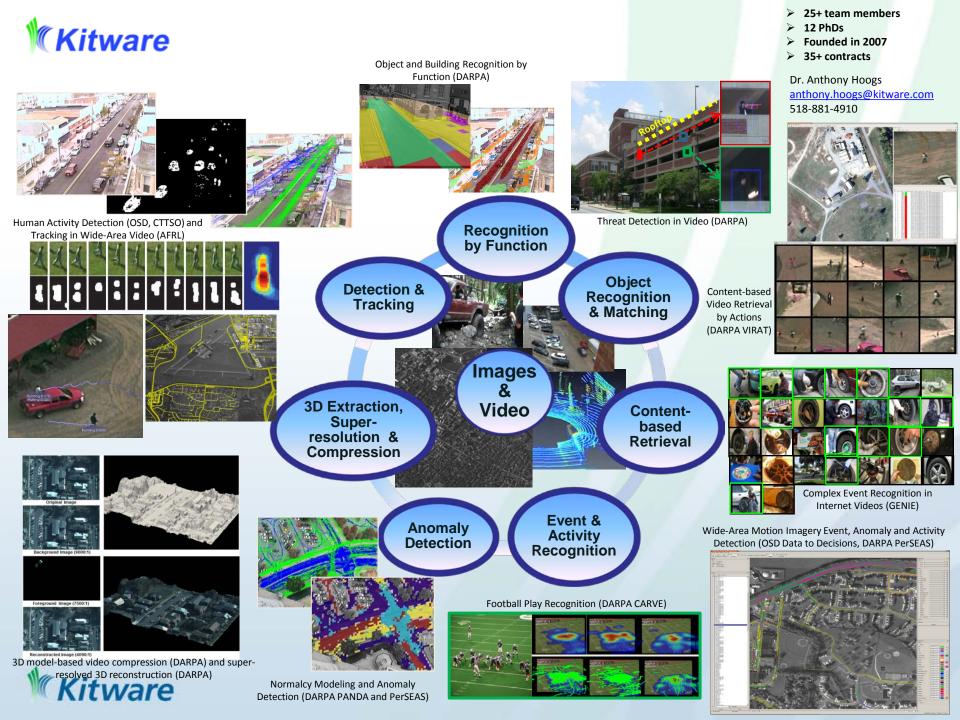


VIAME: An Open-Source Framework for Underwater Image and Video Analytics


Matthew Dawkins¹, Linus Sherrill¹, Keith Fieldhouse¹, Anthony Hoogs¹, Benjamin Richards², David Zhang³, Jon Crall¹, Lakshman Prasad⁴, Nathan Lauffenburger², Gaoang Wang⁵

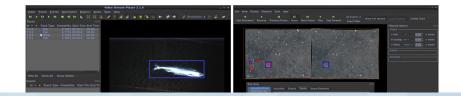
¹Kitware Inc., ²National Oceanic and Atmospheric Administration, ³SRI International, ⁴Los Alamos National Lab, ⁵University of Washington



Kitware Open Source Platforms

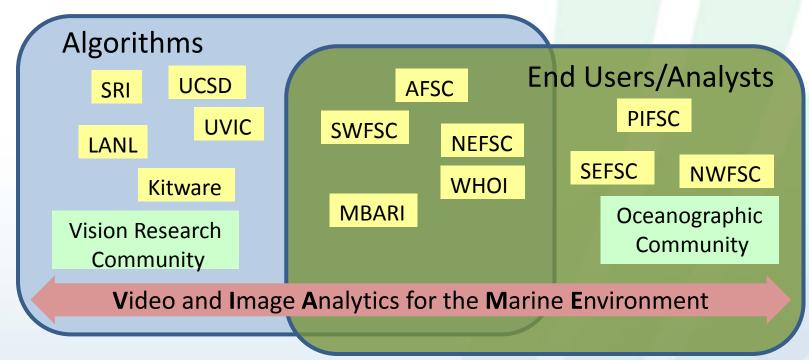
- KWIVER Kitware Imagery and Video
 Exploitation and Retrieval
- **VTK** the visualization toolkit
- **ParaView** large data analysis & visualization application
- **ITK** insight image analysis toolkit
- **CMake** cross-platform build system
 - CDash, CTest, CPack, software process tools
- Resonant/Girder informatics and information visualization
- Kiwi & VES mobile visualization
- IGSTK, CTK, vxl, Open Chemistry Project, VolView, tubeTk, and more...
- **MIDAS** for computational scientific research, testing, and visualization

VIAME


https://github.com/Kitware/VIAME

- Video and Image Analytics for the Marine Environment
- Goal: Develop an opensource software platform for NMFS image and video analysis
 - In close coordination with NOAA community

) 🔒 GitHub, Inc. (US) 🛛 https	:://github.com/Kitware/VIAME	>>>> C C Search	☆ 自 ♥
			10 hou
examples	Update pipeline		19 hour
packages	Update kwiver		5 hour
plugins	Fix linking		4 day
.gitignore	Initial commit		8 month
.gitmodules	Update darknet repo		a mont
CMakeLists.txt	Update examples		4 day



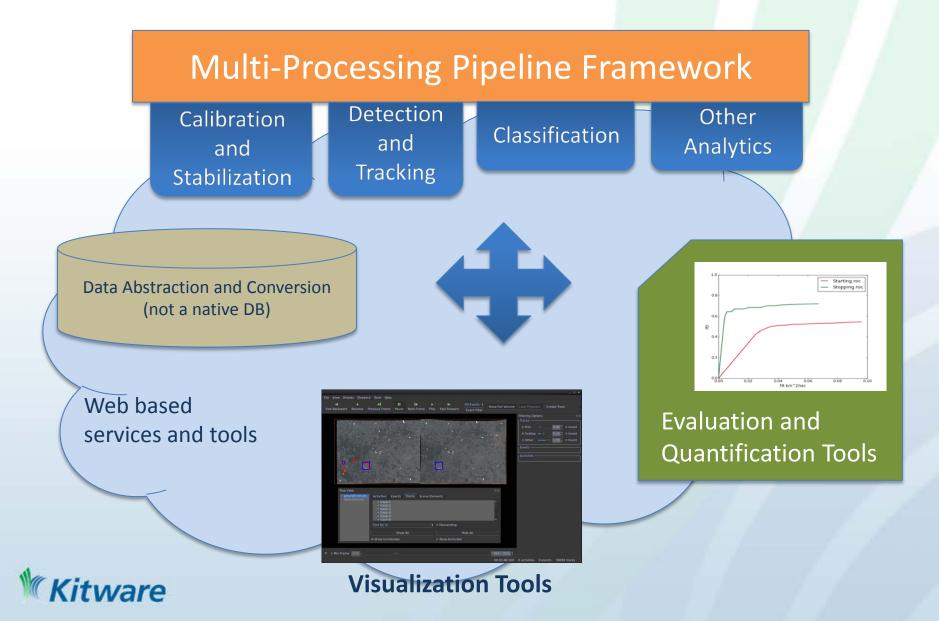
VIAME is a computer vision library designed to integrate several image and video processing algorithms together in a common distributed processing framework, majorly targeting marine species analytics. It is also useful as a general computer vision toolkit, as it contains many common algorithms and compiles several other popular repositories together as a part of its build process. The core infrastructure connecting different system components is currently the KWIVER library, which can connect C/C++, python, and matlab nodes together in a graph-like pipeline architecture. For more information about KWIVER's capabilities, please see here. Alongside the pipelined image processing system are a number of standalone utilities for model training, output detection visualization, and detector/tracker evaluation (a.k.a. scoring).

Lots of Data, Analytics and Users

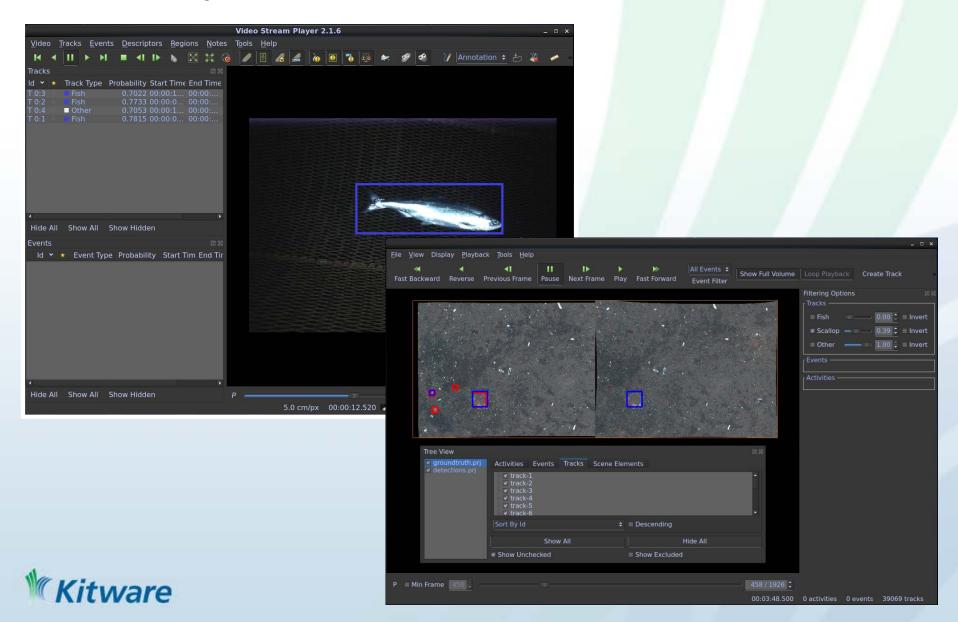
Current Image/Video Analytics

			-								-			
Capability	Primary data source	POC		Stereo process ing		Color, contrast correction	scallop detecti on		fish length, sizing	fish tracki ng	fish classifica tion	anoma ly det.		image segmenta tion
		Willia				no,						-		
NW SC CamTrawl	Cam Trawl	ms	yes	yes	4 Hz	grayscale		yes	automatic	yes	yes			
ROV video fish detection and tracking	SWFSC ROV video	Cutter	no	no	30 Hz	yes		yes, DPM (UW)	no	yes (UW studer t)	desired	desired		
ROV stereo fish	SWFSC ROV GigE				2-4									
measurement	stereo	Cutter	yes	yes	Hz	<mark>yes</mark>		no	manual	no				
WHOI/NEFSC scallop detector	HABCAM towed rig	Dvora	yes	yes	no	yes	yes							1
RPI/Kitware scallop detector	HABCAM towed rig	Hoogs	no	no	no	yes	yes	/						
SRI fish detection, classification, size	PI FSC MOUSS/BotCam	Ben/M ike	yes, accept cal files	yes	30 Hz	no, grayscale		yes		yes	yes			
SEFSC stereo proc	Drop cams from SEFSC	Thomp son	yes	yes	yes			yes, basic backgroun d	manual	no	no			
	Drop cams from	Thomp	-					yes, basic						
Toyon SBIR I	SEFSC	son	yes	yes	yes			HOG	manual	<mark>yes</mark>	yes			
LANL segmentation		Laksh							- 7			yes (image	Maa	yes (polygonal
and shape analysis	HABCAM towed rig	man	no	yes	no	no	yes	yes	no	no	yes)	Yes	1
Toyon SBIR II	Still Images AUV, drop, towed	Clarke	yes	yes	no	yes (Hanu)		yes	yes	no	yes			
WHOI/NEFSC habitat classifier	HABCAM towed rig	Dvora	yes	yes	no	yes							yes	1
NWFSC clustering	AUV and MOUSS	Clarke	no		no	no						yes	partially	

well-implemented; quantified, comparative performance assessment; ready for integration


Green

Existing implementation as mature research code; some **Yellow** performance quantification


Red preliminary research code with ongoing work against major problems

Gray idea or concept; no

VIAME High-Level Components

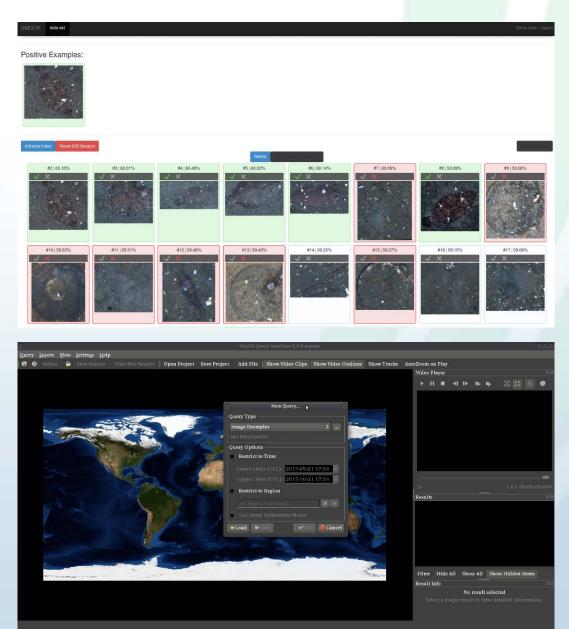
Goal: Object Detection

Goal: Object Detection Viewing and Adjudication

le <u>V</u> iew Display <u>P</u> layba ≪			I► Next Frame	▶ Play	► Fast Forward	All Events ÷	w 2.0.0-master Show Full Volume		Greate Track	Create Event	Create Scene Element	Auto 💠 Edit Mode
ee View			Ę	83	11	Lvent i inci					Filtering Options	Edit Mode
groundtruth.prj scallop_tk_detections.prj	Activities E	vents T	racks Sce	•							Tracks	
yolo_v2_detections.prj	□ track-0 □ track-2										¥ Fish	0.03 🛉 Inver
	☐ track-3 ✓ track-5										Scallop	0.00 - Inver
	a nack-3										Other	0.00 🗧 Inver
											Events	
					1.000						Activities	
							*	***				
					Carl .							
										*		
				_						u (
					- Teach							
						×						
	Sort By Id	÷	Descending									
	Show All		Hide All			_						
	✓ Show Unched	cked St	now Excluded	P	Min Frame	3				3/3 🛱		

Goal: Object Tracking

-			
	VisGUI View 2.0.0-master		000
<u>F</u> ile <u>V</u> iew Display <u>P</u> layback <u>T</u> ools <u>H</u> elp			
Image: Second	Image: Play Fast Forward All Events ÷ Event Filter Show Full Volume Loop Playback	Create Track Create Event Create Scene Element	Auto 🗘 Edit Mode
Tree View 22 Activities Events Tracks Scene Elements V track-0		Filtering Options Tracks ✓ Fish	0.48 [▲] Invert
✓ track-1 ✓ track-2		Scallop	0.00 Invert
⊻ track-4 ≪ track-3		Other	1.00 × Invert
		Events	
		Activities	
Sort By Id		k	
Show All Hide All Show Unchecked Show Excluded	P Min Frame 3	3 / 5 🗧	
		00:00:01.000 0 activities	0 events 0 tracks



Goal: Fish Measurement

haul83.avi - VLC media player Media Playback Audio Video Subtitle Tools View Help 2.09 725.03mm 8.28 1027.81mm 00:29 00:48 ਸਿੱਛ ਸਿੱਛ ਸਿੱਛ ਸਿ

Goal: Image and Video Search

Kitware

VIAME System Components

Fletch

Builds common computer vision dependencies

Sprokit/KWIVER

Connects up different algorithm nodes in runnable pipelines. Nodes can be implemented in C++, Python, or Matlab.

> rocess input :: frame_list_input :image_list_file input_files.txt :frame_time 0.3333 :image_reader:type oev

seess detector : image_object_detector : detector:type ex_fish_detector : detector:model1 model_file.xml detector:threshold 0.20

true

draw.detected_object_set

13

VIAME images

process draw :: draw_detected_object_boxes : default_line_thickness 3

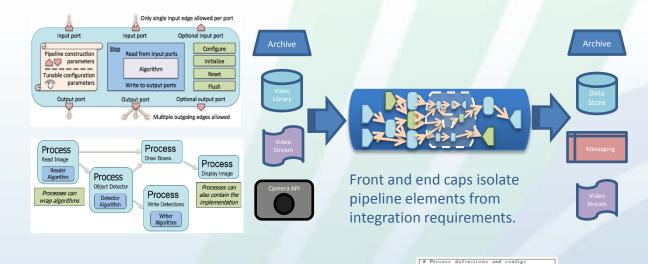
process detector

process disp

: annotate_image : pause_time : title

Global pipeline configs # config _pipeline:_edge

Connections between processes


connect from input.image to detector.image connect from detector.detected_object_set

onnect from input.image to draw.image

onnect from input.timestamp

to disp.timestamp connect from draw.image to disp.image

capacity

#Ifndef VIAME_SCALLOP_TK_DETECTOR_H #define VIAME_SCALLOP_TK_DETECTOR_H

#include <plugins/scallop_tk/viame_scallop_tk_export.h>

#include <vital/algo/image_object_detector.h>

namespace viewe (

class VIAME_SCALLOP_IM_IXPORT scallop_tk_detector : public kwiver::vital::algorithm_implk scallop_tk_detector, kwiver:ivital::algoriimage_object_detector > (

public: scallop_tk_detector(); virtual =scallop_tk_detector();

// det the current configuration (parameters) for this detector virtual kelver:vital::config_block_sptr get_configuration() const;

// Set configurations automatically parked from input pipeline and config files
virtual void set_configuration(kulver:vital:config_block_sptr_config_);
virtual bool check_configuration(kulver:vital:config_block_sptr_config_);

// Hain detection method
virtual kwiver::vital::detected_object_set_sptr detect(
kwiver::vital::mage container_sptr image data) const:

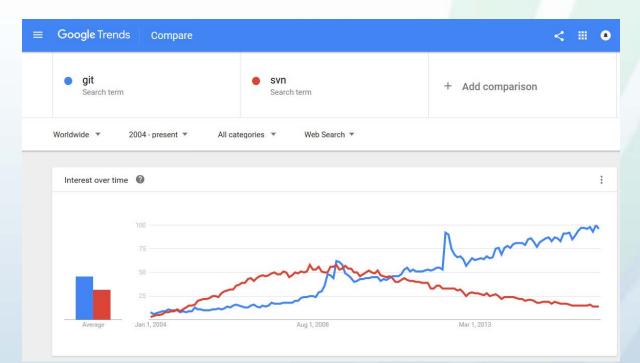
VIAME-Core

Contains domain-specific algorithms in "super-build" comprised of multiple projects and the above.

CMake Build System

Why?

- Cross-platform as long as code supports it
- Underlying pipeline code written primarily in C/C++
- Already used by several popular vision projects (OpenCV, VXL, Caffe)
- Free to use
- Kitware


Matt Dawkins Updat	e script	Latest commit 352bec4 9 hours ago
CMake	Update script	9 hours ago
💼 doc	Update docs	11 hours ago
examples	Add README to provide some explanation of the scoring process.	a day ago
packages	Merge branch 'master' of https://github.com/Kitware/VIAME	a day ago
pipelines	Fix link	7 days ago
plugins	Update plugin	a day ago
.gitignore	Initial commit	a month ago
.gitmodules	Add kwant to build	6 days ago
CMakeLists.txt	Update setup script logic	14 hours ago
README.md	Update docs	11 hours ago

Fundamentals: <u>https://cmake.org/runningcmake/</u>

Git Version Control

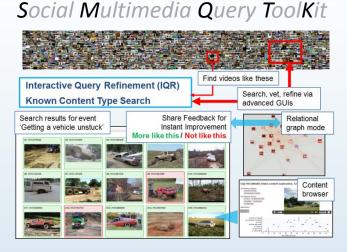
Alternatives: Use Nothing, Google Drive, CVS, SVN, Mercurial

Why Git? Like CMake, also used by many other vision toolkits. Slightly harder to learn than SVN, but more extensible, distributed.

Fundamentals: <u>https://git-scm.com/book/en/v2/Getting-Started-Git-Basics</u> **Kitware**

Super-Build Comprised of Multiple Projects

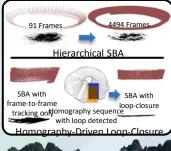
Branch: master - VIAME / packages /		Create new file	Upload files	Find file	History		
mattdawkins Merge branch 'master' of https:/	Latest commit a26109e a day a						
downloads	Add dir for data downloads			8 0	lays ago		
🚡 fletch @ 6eb70d1	Update hash			2 c	days ago		
🖻 kwant @ 54073e3	Update kwant submodule			а	day ago		
🖹 kwiver @ c7cb12c	Update kwiver package hash			3 с	lays ago		
📄 py-faster-rcnn @ 96dc9f1	Add placeholder for faster rcnn			8 c	days ago		
🖻 scallop-tk @ 4735f78	Update scalloptk hash			5 c	lays ago		
🖹 vibrant @ ce9c713	Update vibrant			а	day ago		
👕 vivia @ 33c06e5	Update vivia hash			З с	days ago		



KWIVER.org

Kitware Image and Video Exploitation and **Retrieval Toolkit**

An Open Source, production-quality video analytics toolkit


Streaming FMV

VIBRANT: Video and Image-Based Retrieval and Analysis Toolkit

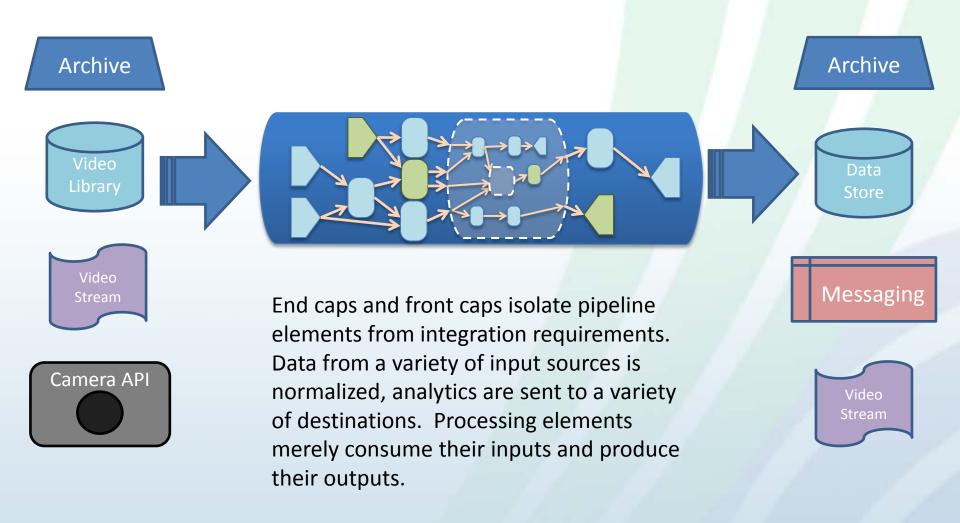
Archive Query

Motion-imagery Aerial Photogrammetry Toolkit

We hope to establish an opensource community for video analytics research and development

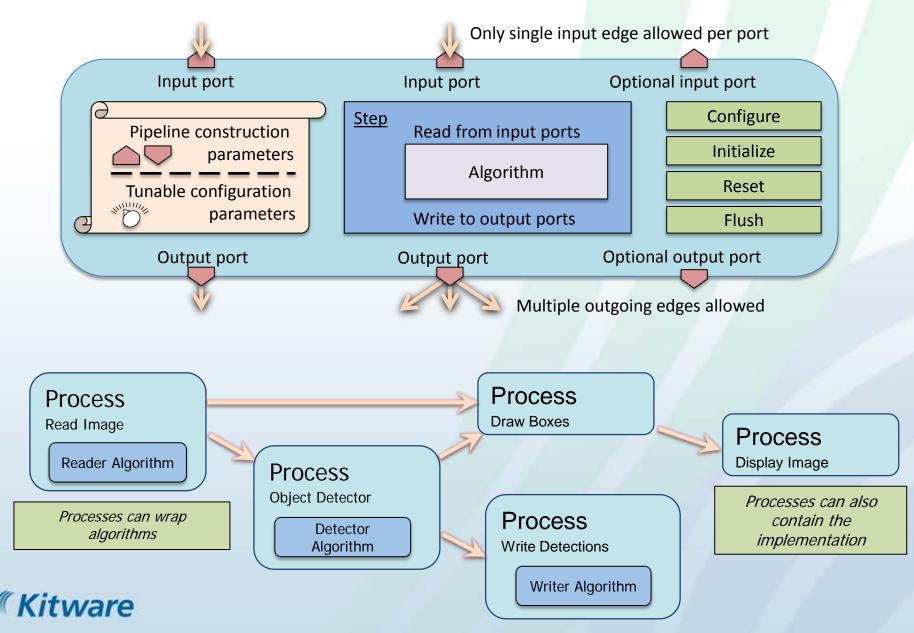
KWIVER.org

- Source code repositories maintained at GitHub
- Current toolkits available:
 - Motion-imagery Aerial Photogrammetry Toolkit for video stabilization and online bundle adjustment MAP-TK
 - Social Multimedia Query Toolkit for visual context extraction and querying for social multimedia SMQTK
 - Stream Processing Toolkit to facilitate multi-state, pipelined processing of data streams Sprokit
 - Common data structures and abstractions for computer vision and machine learning systems VITAL
 - GPU acceleration of core vision algorithms using OpenCL VisCL
 - GUIs and sophisticated visualization tools for content automatically extracted from video, based on VTK ViVIA
 - Detection and tracking of movers in video VIBRANT
 - CMake tools to set up complex build environments and dependencies **Fletch**

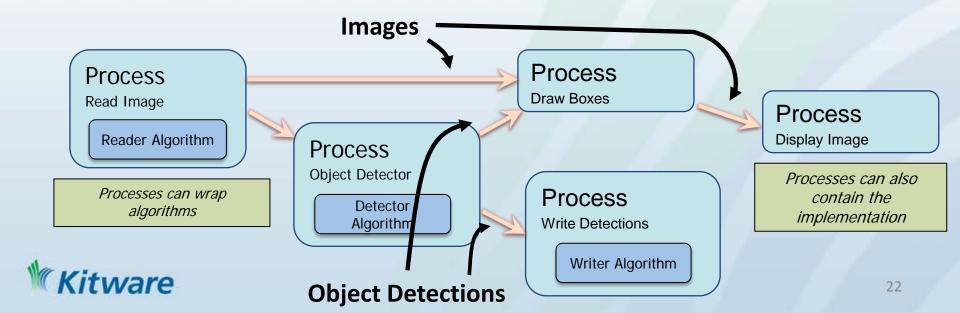

Kitware

Sprokit – A Framework for Streaming Data Processing

- What is Sprokit?
 - Plugin-based streaming data processing engine on which to build modular streaming data processing applications (especially video processing applications).
- What does Sprokit do?
 - Chains processing elements into a directed acyclic graph (DAG)
 - Executes a constructed pipeline on streaming data (e.g. video)
 - Provides dynamic construction/configuration via configuration files
 - Supports algorithms written in C++, Matlab, and Python
- Why was Sprokit developed?
 - To build complex streaming algorithms from simple components
 - To replace an older, much more restrictive, pipeline framework
 - Because existing open source frameworks (e.g. Gstreamer, Ecto, etc.) did not meet all requirements in the list above.



Swappable Front and End Caps



Individual Processing Nodes

VITAL: Common Data Structures for Edges

- Normalize and standardize data structures to facilitate integration across different algorithms
- Isolate system integration issues by providing test fixtures for remote development
- Encourage collaboration by providing a framework for data sharing and replay
- Encourage modular development with pipeline based architecture with common data structured passed on edges

VITAL: Common Example Types

Kitware

		detected_object.h $ imes$ track.h $ imes$
Dev	viame src packages	149 150 151 151 152 153 154 155 155 151 152 153 154 155 155 154 155 154 155 154 155 154 155 154 155 154 155 154 155 154 155 154 155 154 155 154 155 154 155 154 155 155 154 155 154 154 155 154 155 155 155 154 154 1
Name	detected_object_sec.n detected_object_type.cxx detected_object_type.h essential_matrix.cxx	<pre></pre>
	essential_matrix.h feature.cxx feature.h feature_set.h	<pre> this analogue to the trian tri trian t</pre>
	feature_track_set.cxx feature_track_set.h fundamental_matrix.cxx	48 Created, the geome 174 49 -//- 49 -//- 64 ///- 64 ///- 64 ///- 65 -/- 66 -/- 67 - </td
	fundamental_matrix.h geodesy.cxx	68 * This class represents a detected ob 55 181 /// Set the track identification number 70 * There is one object of this type fo 56 /** 182 void set_id(track_id_tid) { id_ = id; } 71 * objects are defined by a bounding b 57 set the track identification number void set_id(track_id_tid) { id_ = id; } 72 * object has an optional classificati 58 • @param upper_lef 184 73 */ */ 60 @param upper_lef 186 74 */ */ 186 */// Set the track data_sptr d) { data_ = d; }
	geodesy.h geo_MGRS.cxx geo_MGRS.h	76 61 62 77 public: 62 78 typedef std::vector< detected object
	geo_point.cxx geo_point.h geo_polygon.cxx	84 68 (ebrief Create bd 195 * The added track state must have a frame_id greater than 85 /*ebrief Create detected object wit 70 196 * the last frame in the history. 87 *eparam blox Bounding box surround 71 *eparam othicknew idence betectors confic 72 89 *eparam classifications Optional o 74 bounding box(vector_type const& upper_left, 74
	geo_polygon.h homography.cxx homography.h	91 92 94 94 95 96 97 97 97 97 97 97 97 97 97 97
	homography_f2f.cxx homography_f2f.h	100 Gereturn Managed copy of this 00 82 /* 101 . . . 102 . . . 103 . . . 104 . . . 105 . . . 106 . . . 107 . . .
ş. Ş.	homography_f2w.cxx homography_f2w.h	107 108 * The bounding box for this detection is returned. This box is in 109 * image coordinates. A default constructed (invalid) bounding box 110 * is returned if no box has been supplied for this detection.

C++ but with python (and limited Matlab) bindings

Simple Pipeline Example

process input :: frame_list_input :image_list_file input_files.txt :frame_time .3333 :image_reader:type ocv

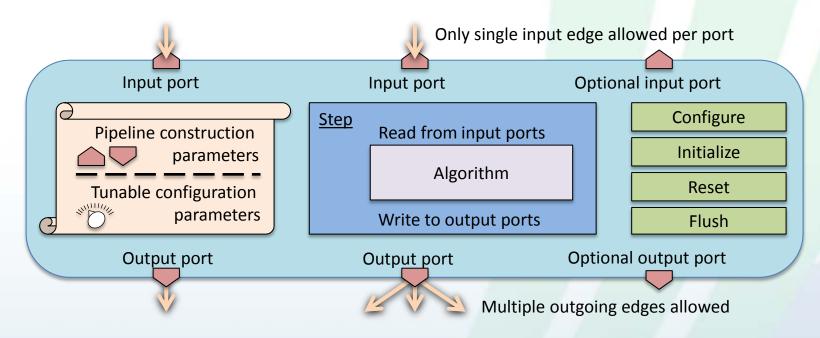
process detector :: image_object_detector :type scallop_tk_detector :scallop_tk_detector:config_file config_location

process draw :: draw_detected_object_boxes :default_line_thickness 3

process disp :: view_image :annotate_image :pause_time :title

true 0 # 1.0 NOAA images

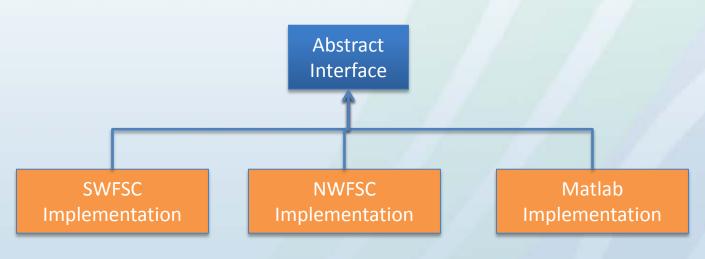
connections connect from input.image to detector.image


connect from detector.detected_object_set
 to draw.detected_object_set
connect from input.image
 to draw.image

connect from detector.detected_object_set
 to archive.detected_object_set

connect from input.timestamp to disp.timestamp connect from draw.image to disp.image

Process Definition


Two separate ways to define:

- Manual: User specifies all input/output ports and each rectangular block in the above (step, configure, initialize, etc...)
- Automatic: Only need to define single function for existing base class APIs with process wrappings
 - For example, object_detector: image in, detections out

Kitware

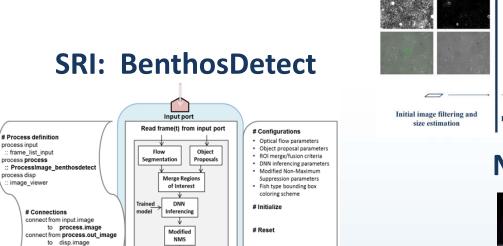
Algorithm Concepts

- Application uses abstract algorithm type using a polymorphic model
- Instantiates an implementation based on config
- Implementations are dynamically loadable
- New implementations can be easily added

Automatic Implementation Method: Example Base Classes

kwiver/vital/algos/image object detection.h

```
🔚 image object detector.h 🖾
                                                                                       🔚 image_object_detector_process.h 🔀
                                                                                       42 // -----
                                                                                       43 4/**
50 $/**
     * @brief Image object detector base class/
                                                                                           *
                                                                                           * \iports
                                                                                       46
     */
                                                                                            * \iport{image}
   class VITAL ALGO EXPORT image object detector
                                                                                       48
    : public algorithm def<image object detector>
                                                                                            * \oports
56 6(
    public:
                                                                                            * \oport{detected_object_set}
      /// Return the name of this algorithm
                                                                                            */
      static std::string static type name() { return "image object detector"; }
                                                                                             : public sprokit::process
                                                                                       55 01
      /// Find all objects on the provided image
                                                                                          public:
      1++
       * This method analyzes the supplied image and along with any saved
       * context, returns a vector of detected image objects.
       * \param image data the image pixels
                                                                                           protected:
       * \returns vector of image objects found
                                                                                             virtual void configure();
       */
                                                                                             virtual void step();
      virtual detected object set sptr
          detect ( image container sptr image data) const = 0;
                                                                                           private:
                                                                                             void make ports();
                                                                                             void make config();
    protected:
      image_object_detector();
                                                                                            class priv;
    };
                                                                                             const std::unique_ptr<priv> d;
    /// Shared pointer for generic image object detector definition type.
    typedef std::shared ptr<image object detector> image object detector sptr;
    } } // end namespace
                                                                                          } // end namespace
    #endif //VITAL ALGO IMAGE OBJECT DETECTOR H
```


kwiver/sprokit/core/image object detector process.h

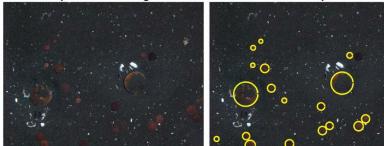
* @brief Image object detector process. class KWIVER PROCESSES NO EXPORT image object detector process image object detector process (kwiver::vital::config block sptr const& config); virtual ~image_object_detector_process(); }; // end class object detector process #endif /* ARROWS PROCESSES IMAGE OBJECT DETECTOR PROCESS H */

Example Algorithms

Kitware: ScallopTK

Flush

Template Approximation Calculate CNN around select candidate points Canny Edge Filtering Shape Adaptive Thresholding Color Texture **Color Blob Detection** Classify features, Consolidate and prioritize **Calculate feature vector** perform high-level logic, Detect candidate points in image around each candidate point candidate points update internal models


NOAA/UW: FishRuler

LANL: ScallopFinder

Input Benthic Image

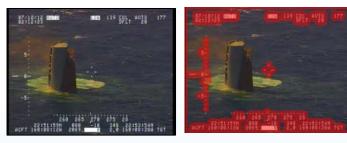
Candidate Scallop Detections

ROIs, types

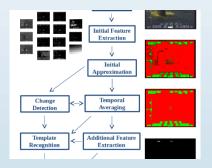
Write frame(t) to output port Output port

process input

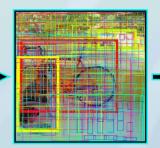
process disp

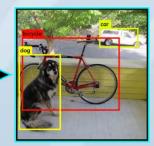

:: frame_list_input

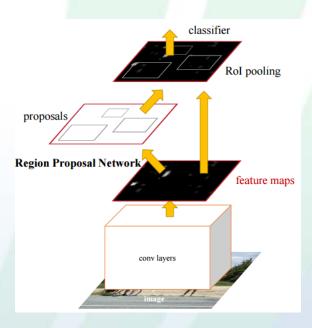
process process


: image_viewer

Example Algorithms (cont.)


Burn-Out





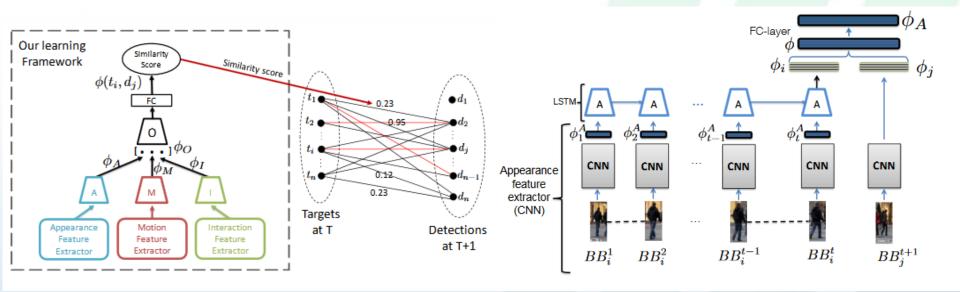
\rightarrow

Faster R-CNN

YOLOv2

Baseline Tracker – Simple Tracker

```
ingest_video.pipe 🗱
```


ingese_		
66	to detector writer.image file name	
67		
68	# ======= CORE TRACK	ER ====================================
69		
70	process detection descriptor	
71	<pre>:: compute_track_descriptors</pre>	
72	:inject_to_detections	true
73	:computer:type	burnout
74	<pre>relativepath computer:burnout:config_file =</pre>	detection descriptors.conf
75		
76	process tracker	
77	<pre>:: compute_association_matrix</pre>	
78	:matrix_generator:type	from_features
79		
80	<pre>block matrix_generator:from_features:filter</pre>	
81	:type	class_probablity_filter
82	:class_probablity_filter:threshold	0.001
83	<pre>:class_probablity_filter:keep_all_classes</pre>	false
84	:class_probablity_filter:keep_classes	car;person
85	endblock	
86		
87	process track_associator	
88	<pre>:: associate_detections_to_tracks</pre>	
89	:track_associator:type	threshold
90	:track_associator:threshold:threshold	100.0
91	<pre>:track_associator:threshold:higher_is_better</pre>	false
92		
93	process track_initializer	
94	<pre>:: initialize_object_tracks</pre>	
95	:track_initializer:type	threshold
96		
97	<pre>block track_initializer:threshold:filter</pre>	
98	:type	<pre>class_probablity_filter</pre>
99	:class_probablity_filter:threshold	0.001
100	:class_probablity_filter:keep_all_classes	false
101	:class_probablity_filter:keep_classes	car;person
102	endblock	

Pipeline performs differencing on CNN intermediate features derived from bounding boxes around detections

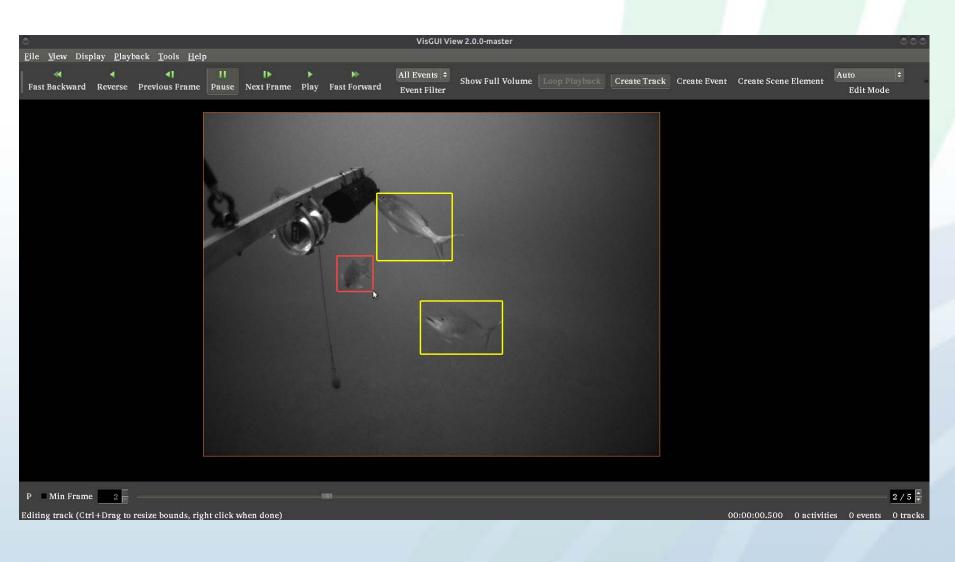
Baseline Tracker – Tracking the Untrackable

Implemented in PyTorch, Integrated into VIAME

"Tracking the Untrackable: Learning to track multiple cues with long-term dependencies" Sadeghian et al. ICCV 2017

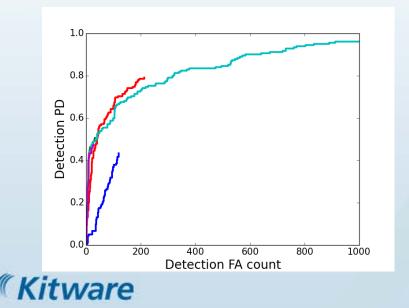
Algorithm Usage

- Application uses abstract algorithm(s) via pointer to base class, can either be used in pipeline files or C++ code. Pipelines can also be embedded in C++ code.
- Configuration info specifies algorithm to use
- High level code is unchanged as different algorithm implementations are used


```
namespace algo = kwiver::vital::algo;
algo::image_io_sptr m_image_reader;
kwiver::vital::config_block_sptr algo_config = get_config(); // config
// validate config parameters
if ( ! algo::image_io::check_nested_algo_configuration( "image_reader", algo_config ) )
{ // Handle error
}
// instantiate image reader and converter based on config type
algo::image_io::set_nested_algo_configuration( "image_reader", algo_config, m_image_reader);
if ( ! m_image_reader )
{ // Handle error
}
// Read an image
kwiver::vital::image_container_sptr img_c;
img_c = m_image_reader->load( resolved_file_name );
```

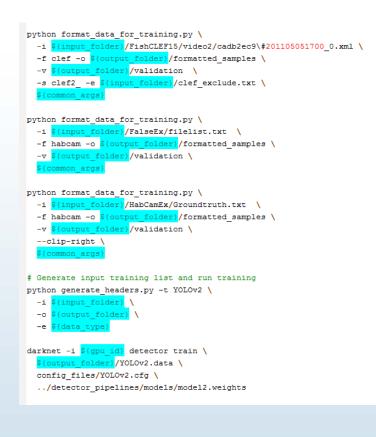

Standalone Utilities: GUIs for Imagery

					×
<u>F</u> ile <u>V</u> iew Display <u>P</u> layback	k <u>T</u> ools <u>H</u> elp				
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	II I▶ ▶ revious Frame Pause Next Frame Play	→ All Events ¢ Y Fast Forward Event Filter	Show Full Volume	Loop Playback	Create Track »
		-		Filtering Options Tracks Fish Scallop Other Events Activities	0.00 👗 🔳 Invert
Tree View			E X		
 groundtruth.prj detections.prj 	Activities Events Tracks Scene Eler ✓ track-1 ✓ track-2 ✓ track-3 ✓ track-4 ✓ track-5 ✓ track-6				
	Sort By Id Show All Show Unchecked	Descending Hide All Show Excluded			
P 🔳 Min Frame 🛛 🛓 🚃 🚃	- 1991		→ 458 / 1926 🔹 00:03:48.500	0 activities 0 e	events 39069 tracks
Kitware					33


GUIs for Displaying Videos and Annotations

Evaluation and Scoring

- VIAME includes an extensive scoring capability for measuring detection, tracking, and classification on images or video
- Existing annotations can be translated to VIAMEcompatible formats



Detection-Pd: 0.791209 Detection-FA: 213 Detection-PFA: 0.515738 Frame-NFAR: not computed Track-Pd: 0.791209 Track-FA: 213 Computed-track-PFA: 0.515738 Track-NFAR: not computed Avg track (cont., purity): 1.34, 1 Avg target (cont., purity): 1.47, 0.79 Track-frame-precision: 0.5

DEPTH-Hash : "a2123cde"

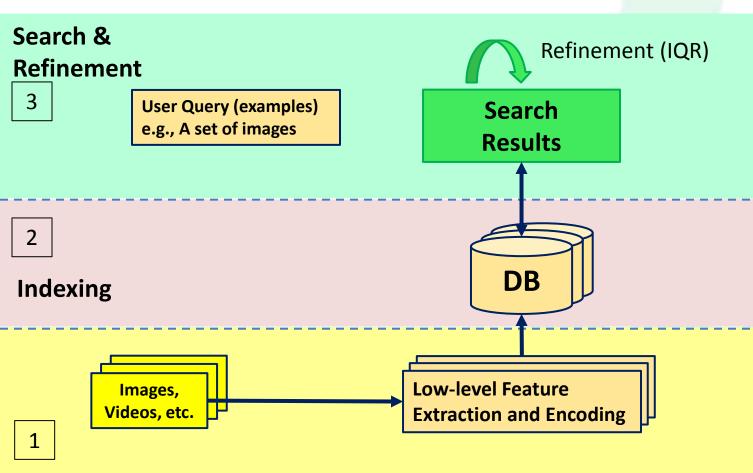
Model Training

Old:

Kitware

New:

6

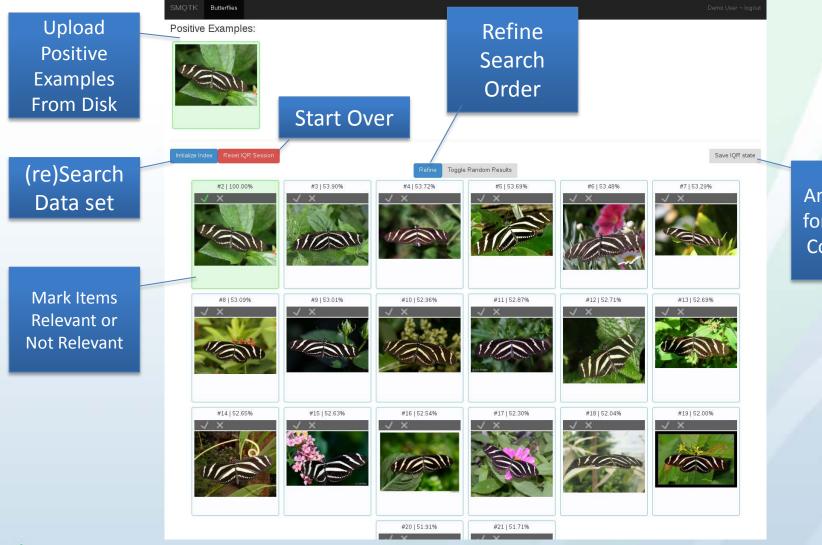

8

31

training_pipeline.pipe imes# Pipeline for training object detector # global pipeline config config _pipeline:_edge capacity 5: 10 11 12 13 14 process tdata :: training_data_source image list file: image list.txt :image_reader:type ocv 15 :groundtruth file detections.kw18 16 :groundtruth_reader:type kw18 17 18 19 20 process split :: split image 21 22 23 24 25 :split_image:type ocv connect from tdata.image to split.image 26 27 28 29 30 process dm :: compute_stereo_depth_map :compute map:type ocv bm connect from split.left_image to dm.left_image 32 33 34 35 36 37 38 connect from split.left_image to dm.right image process merger :: merge_image :split_image:type 000 39 40 connect from tdata.image to merger.image1 41 42 connect from dm.depth_map to merger.image2 43 44 === TRAINING UTILITY ======== 45 46 47 48 49 50 51 52 process stk_trainer :: detector_trainer scallop tk trainer :trainer:type connect from merger.net_image to stk_trainer.image connect from tdata.groundtruth stk trainer.groundtruth

pipeline runner – p training pipeline.pipe

Interactive Query Refinement: A User-Driven Search Work Flow

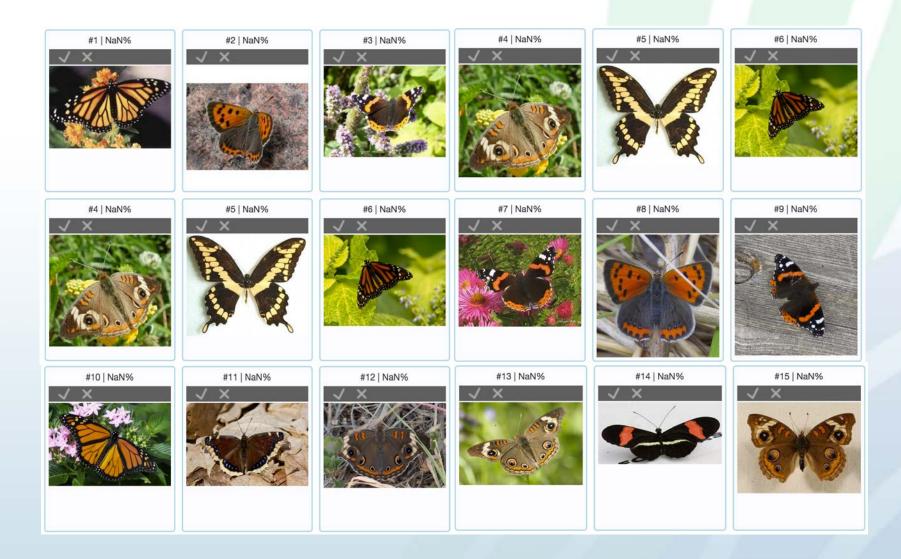


+ : good for similarity search

- : no semantic queries

Demo IQR Interface Example

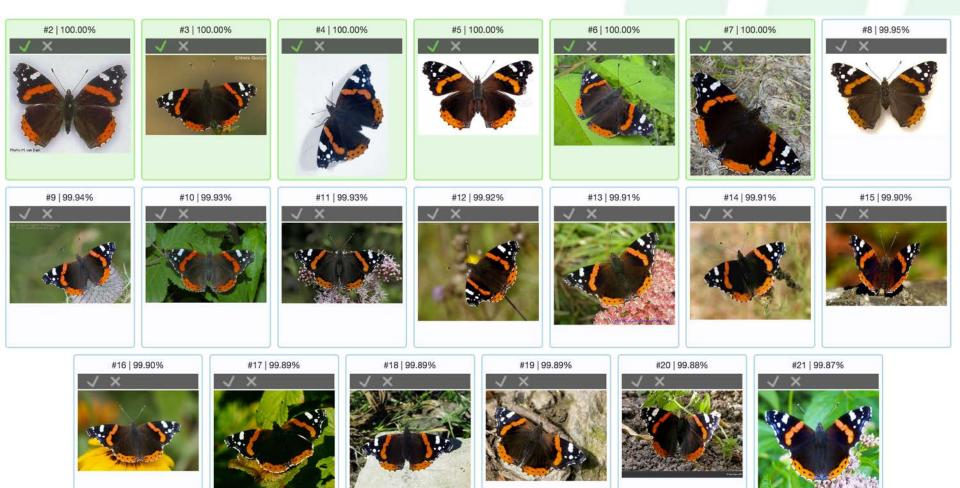
Export Annotations for Classifier Constructio n


IQR Example

Start IQR with a single positive exemplar Dataset contains 832 images with 55-100 images per type. **Use CAFFE AlexNet Layer 7** as an image descriptor

Random Selections from Leeds Butterfly Dataset

Kitware


Josiah Wang, Katja Markert, and Mark Everingham Learning Models for Object Recognition from Natural Language Descriptions In Proceedings of the 20th British Machine Vision Conference (BMVC2009)

Results from Single Exemplar

One Refinement Based on Adjudications from Previous Slide

Ongoing and Future Developments

- Improved video handling
- Improved detection and tracking
- Additional stereo processing
 - Calibration
 - Dense 3D reconstruction
- More integrated analytics
 - Anomaly detection and clustering
 - Habitat classification
- Large-scale visualization
- Extend deep learning integration
- Database extensions
- Make system easier to use
- Documentation

Demo

Applications Places S	ystem 📧 🥹 💱	🤓 🛄					4ar 14, 12:28 PM	 				2.80 GHz	10 al
						VisGUI	View 2.0.0-master						
e <u>V</u> iew Display <u>P</u> lay	yback <u>l</u> oois <u>H</u> eij												
≪ ≪ast Backward Reverse	II Previous Frame	II Pause	Next Frame	Play	≫ Fast Forward	All Events ¢ Event Filter	Show Full Volume	Create Track	Create Event	Create Scene Ele	ment Auto	¢ dit Mode	
									Filtering Of Tracks —	p ==			🔳 Inve
Min Frame								18/21		00:00:17.000			

VIAME Resources

- VIAME is publicly-available, open-source software
 - viametoolkit.org/
 - Community contributions are highly encouraged, both framework additions and analytics
- Multiple benthic datasets previews are available at <u>marineresearchpartners.com/nmfs_aiasi/Home.html</u>

Thank you NOAA!

Code Repository: https://github.com/Kitware/VIAME

Initial development and testing of VIAME was funded by the NOAA Fisheries Strategic Initiative on Automated Image Analysis. The findings and conclusions in the paper are those of the authors and do not necessarily represent the views of the National Marine Fishery Service, NOAA, or the government of the United States. The use of trade, firm, or corporation names in this publication is for the convenience of the reader and does not constitute an official endorsement or approval of any product or service to the exclusion of others that may be suitable.

