

Video and Image Analytics for the Marine Environment (VIAME): An Open Source Framework for Underwater Image Processing

Dr. Anthony Hoogs Senior Director of Computer Vision anthony.hoogs@kitware.com 518-881-4910

Keith Fieldhouse Assistant Director of Computer Vision Keith.fieldhouse@kitware.com 518-836-2190

Topics

- AIASI Background
- Open-source software at Kitware
- KWIVER
- VIAME Common Processing Environment
- Additional KWIVER Capabilities

Pacific Islands Fisheries Science Center

NOAA National Marine Fisheries Service

NOAA Fisheries Strategic Initiative on Automated Image Analysis

Benjamin L. Richards

NOAA Fisheries, Pacific Islands Fisheries Science Center Fisheries Research and Monitoring Division, Stock Assessment Program

Stock Assessment Data Needs

Marine Fisheries Stock Assessment Improvement Plan Report of the National Marine Fisheries Service National Task Force for Improving Fish Stock Assessments

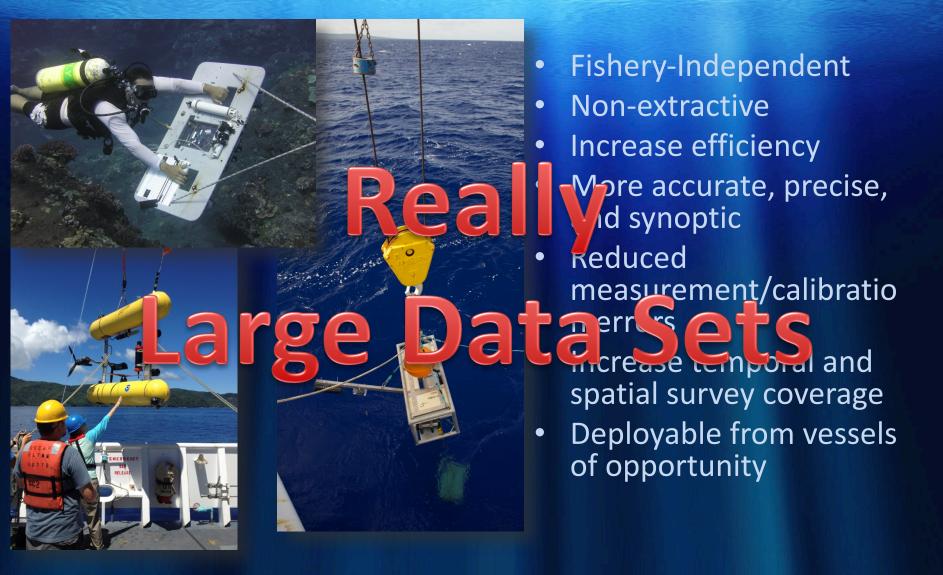
Pamela M. Mace (Chair), Norman W. Bartoo, Anne B. Hollowed, Pierre Kleiber, Richard D. Methot, Steven A. Murawski, Joseph E. Powers, and Gerald P. Scott

October 2001 NOAA Technical Memorandum NMFS-F/SPO-56

U.S. DEPARTMENT OF COMMERCE Donald Evans, Secretary

National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher Jr., USN (ret.), Under Secretary for Oceans and Atmosphere

National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries


Mace et al. 2001

Accurate and precise estimates of speciesspecific size-structured abundance

Numbers – species – length

- "Greatest impediment to producing accurate, precise, and credible stock assessments is the lack of adequate input data"
- No index of abundance for 40% of stocks in 1999 Status of Fisheries Report
- Improved technologies to:
 - sample, survey, or experiment with species of interest in situ,
 - decrease sampling error,
 - increase sampling intensity,
 - increase the area or number of species covered.

Optical Technologies

Challenges

- Data streams exceed capabilities of human analysts
 - 100,000 millions of images in a matter of days
- Data products not available quickly enough for use in stock assessments
- Automated tools must be developed to increase speed of analysis, reduce costs, improve assessments

NMFS Workshop on Automated Image Processing

Recommendations

- Inter-disciplinary collaboration
- Create international forum or working group for automated analysis of images from marine image-based sampling systems
- Development of a database to facilitate in feature recognition for marine organisms
 - Shared image bank
- Optimal allocation of automation in analysis
 - Easy vs Hard problems
 - Partial automation
- Modular approach with medium for exchange

NOAA Technical Memorandum NMFS-F/SPO-121

Report of the National Marine Fisheries Service Automated Image Processing Workshop

September 4-7, 2010 Seattle, Washington

Kresimir Williams, Chris Rooper, and John Harms (editors)

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

March 2012

NMFS Strategic Initiative on Automated Image Analysis

Mission

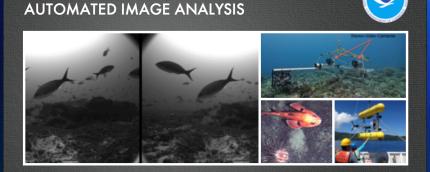
 Develop guidelines, set priorities, and fund projects to develop broad-scale, standardized, and efficient automated analysis of still and video imagery for use in stock assessment

- Benjamin Richards (chair)
 NOAA Pacific Islands Fisheries Science Center
- Alexandra Branzan Albu University of Victoria
- Elizabeth Clarke NOAA Northwest Fisheries Science Center
- George "Randy" Cutter NOAA Southwest Fisheries Science Center
- Duane Edgington Monterey Bay Aquarium Research Institute
- Dvora Hart NOAA Northeast Fisheries Science Center
- David Kriegman

University of California, San Diego

- Clay Kunz Google
- Michael Piacentino SRI International
- Lakshman Prasad
 Los Alamos National Laboratory
- Charles Thompson
 NOAA Southeast Fisheries Science Center
- Kresimir Williams NOAA Alaska Fisheries Science Center

Image Classes


- Still vs Video Imagery
 - Mono vs Stereo
 - Static vs Dynamic Backgrounds
 - Natural vs artificial lighting
- Targets
 - Benthic Habitat
 - Benthic Fish or Invertebrates
 - Fish in trawls
 - Fish in situ
 - Fish on deck
 - Marine mammals

Example Data Streams

- Single Camera Still Imagery
 - Aerial Photography Seals
- Stereo Still Imagery
 - AUVs Groundfish
- Single Camera Video
 - Towed Camera Systems Scallops
 - ROVs West Coast Groundfish
- Stereo-Video
 - Fixed Camera Systems Reef and Hawaii Bottomfish
 - Trawl nets Alaska Pollock
 - AUVs Hawaii Bottomfish
 - Submersibles West Coast Groundfish

Links to Image Resources

HOME DATASETS TEAM MEMBERS EXTERNAL LINKS

NOAA FISHERIES STRATEGIC INITIATIVE ON

MISSION

The mission of the NOAA Fisheries Strategic Initiative on Automated image analysis is to develop guidelines, set priorities, and fund projects to develop broad-scale, standardized, and efficient automated tools for the analysis of optical data for use in stock assessment.

GOAL

To create an end-to-end open source software toolkit allowing for the automated analysis of optical data streams to provide fishery-independent abundance estimates for use in stock assessment.

BACKGROUND

The demand to improve stock assessments drives a need for improved data, particularly more precise, accurate, efficient and timely scientific surveys of fish abundance and their associated

http://marineresearchpartners.com/nmfs_aiasi/Home.html

NAS CATS

Image Analysis Toolbox

- Collection of tools (software) to automate image/video analysis
- Must be readily available & usable by survey & stock assessment scientists
- Stand-alone applications that combine GIU & calculation engine

NOAA's National Marine Fisheries Service

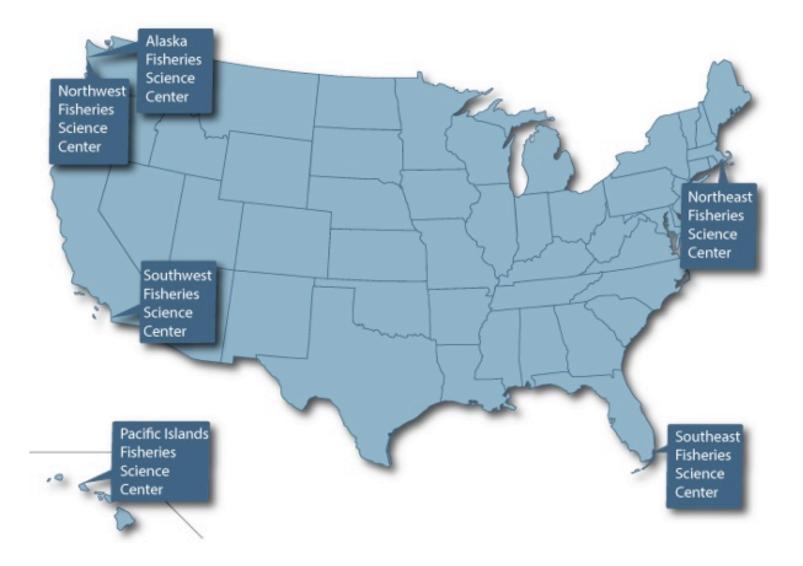
icing NFT Softwa

The NOAA Fisheries Toolbox (NFT) is a suite of biological modeling software programs that can be used in fisheries stock assessments.

Currently Available Models

Estimation of Stock Size and Mortality		Version	Da	te Updated
A Stock Production Model Incorporating Covariates	(ASPIC)	5.34.9		2/08/2011
Age Structured Assessment Program Model	(ASAP)	3.0.17	UPDATED	04/14/2014
<u>Collie-Sissenwine Analysis</u>	(CSA)	4.3		01/13/2014
Dual Zone Virtual Population Analysis	(VPA-2BOX)	3.05		8/4/2004
Statistical Catch at Age Model	(STATCAM)	1.4.1		5/2/2008
Statistical Catch at Length Model	(SCALE)	1.0.11		9/13/2013
Stock Synthesis Version 3	<u>(SS3)</u>	3.45f		10/18/2012
<u>Virtual Population Analysis</u>	(VPA)	3.4.5	UPDATED	4/18/2014
Management Scenario Projections				
Age Structured Projection Model	(AGEPRO)	4.2.2		9/17/2013
Biological Reference Points				
Age Based Yield Per Recruit	(YPR)	3.3		9/17/2013
An Index Method	(AIM)	2.5.0		1/31/2014
Length Based Yield Per Recruit	(YPRLEN)	2.1		4/20/2012
Stock Recruitment Fitting Model	(SRFIT)	7.0.1		3/18/2010
Model Performance Evaluation				
Population Simulator - Age Based	(POPSIM-A)	8.2		12/12/2013
Population Simulator - Length Based	(POPSIM-L)	8.0		12/12/2013
Management Strategy Evaluation	(MSE)	4.0		12/23/2013
<u>Visual Report Designer</u>	(VisRpt)	1.6.1		4/2/2008
Models for Data Limited Situations				
Depletion Corrected Average Catch Model	(DCAC)	2.1.1		10/4/2012
Survival Estimation in Non-Equilibrium situations	(SEINE)	1.3		9/15/2008
Model for Analyzing Tagging Data				
Instantaneous Rates	(IRATE)	2.0		4/19/2013
Additional Tools				
Kalman Filter	(KALMAN)	2.3		7/24/2009
Model Compare	(MCOMP)	4.3		2/10/2014
Productivity and Susceptibility Analysis	(PSA)	1.4		3/4/2010
Rivard Weights Calculator	(RIVARD)	2.0		10/24/2008

Notes


This suite of programs supersedes the former toolboxes FACT (Fisheries Assessment and Computation Toolbox) and WHAT (Woods Hole Assessment Toolbox).

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NMFS. It does not represent and should not be construed to represent any agency determination or policy.

> NOAA Fisheries Toolbox Version 3.1 website last modified March 6, 2014

http://nft.nefsc.noaa.gov

NOAA FSC's Involved in AIASI

Current Image/Video Analytics

Capability	Primary data source	POC	Stereo calibrat ion	Stereo process ing		Color, contrast correction	scallop detecti on		fish length, sizing	fish tracki ng	fish classifica tion	anoma ly det.		image segmenta tion
		Willia				no,						-		
NW SC CamTrawl	Cam Trawl	ms	yes	yes	4 Hz	grayscale		yes	automatic	yes	yes			
ROV video fish detection and tracking	SWFSC ROV video	Cutter	no	no	30 Hz	yes		yes, DPM (UW)	no	yes (UW studen t)	desired	desired		
ROV stereo fish	SWFSC ROV GigE				2-4									
measurement	stereo	Cutter	yes	yes	Hz	yes		no	manual	no				
WHOI/NEFSC scallop detector	HABCAM towed rig	Dvora	yes	yes	no	yes	yes							
RPI/Kitware scallop detector	HABCAM towed rig	Hoogs	no	no	no	yes	yes							
SRI fish detection, classification, size	PI FSC MOUSS/BotCam	Ben/M ike	yes, accept cal files	yes	30 Hz	no, grayscale		yes		yes	yes			
SEFSC stereo proc	Drop cams from SEFSC	Thomp son	yes	yes	yes			yes, basic backgroun d	manual	no	no			
Toyon SBIR I	Drop cams from SEFSC	Thomp son	yes	yes	yes			yes, basic HOG	manual	yes	yes			
LANL segmentation and shape analysis	HABCAM towed rig	Laksh man	no	yes	no	no	yes	yes	no	no	yes	yes (image)	Yes	yes (polygonal)
Toyon SBIR II	Still Images AUV, drop, towed	Clarke	yes	yes	no	yes (Hanu)		yes	yes	no	yes			
WHOI/NEFSC habitat classifier	HABCAM towed rig	Dvora	yes	yes	no	yes							yes	
NWFSC clustering	AUV and MOUSS	Clarke	no		no	no						yes	partially	

well-implemented; quantified, comparative performance assessment; ready for Green integration

Existing implementation as mature research code; some Yellow performance quantification preliminary research code with ongoing work against major problems

Red

Gray idea or concept; no implementation

VIAME Goals

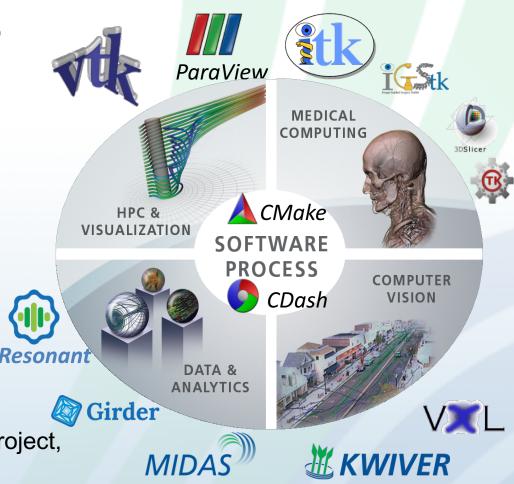
- Video and Image Analytics for the Marine Environment
- Develop a common software platform for NMFS image and video analysis
 - In close coordination with NOAA community
- Incorporate interactive query refinement for online algorithm
 improvement for fish detection
 - Can be applied to algorithms from anyone
- Test and enhance parameter auto-tuning capability for underwater video analytics
 - Efficiently find near-optimal performance for any algorithm

Funded by NOAA to integrate R&D in underwater image and video analytics being performed at various NOAA and NOAAfunded institutions

VIAME Project History

- Dr. Hoogs was invited to join a panel of experts on image and video analytics to develop a National Academies workshop on behalf of NOAA in May 2014
- Invited to join AIASI Committee after the workshop
- In fall 2015, NOAA awarded Kitware a subcontract to develop VIAME (Video and Image Analytics in a Marine Environment)
 - Based on Kitware's Open Source Heritage
 - Open Source common framework for analytics
 - Approximately 1 FTE in 2016
 - Similar expected in 2017

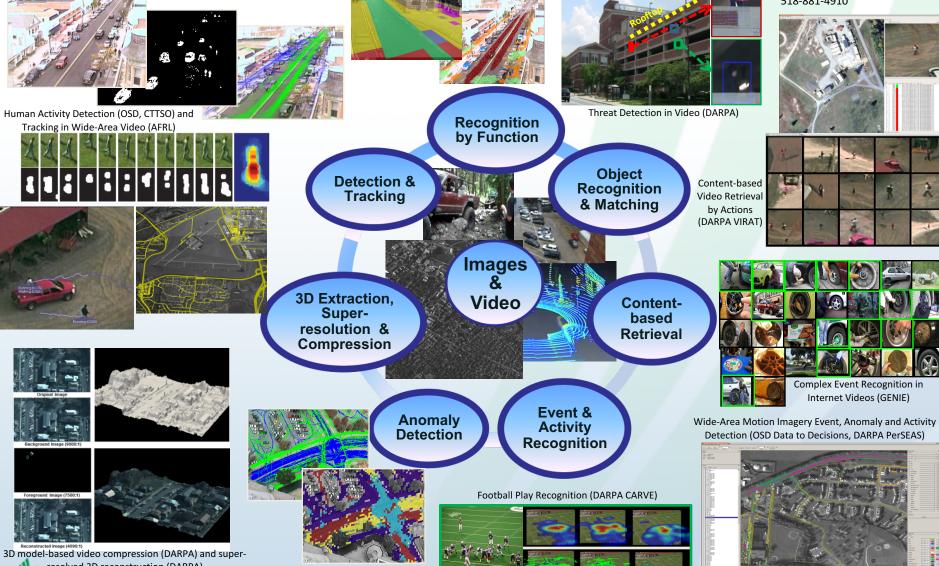
Topics


- AIASI Background
- Open-source software at Kitware
- KWIVER
- VIAME Common Processing Environment
- Additional KWIVER Capabilities

Kitware Open Source Platforms

- KWIVER Kitware Imagery and Video
 Exploitation and Retrieval
- VTK the visualization toolkit
- ParaView large data analysis & visualization application
- **ITK** insight image analysis toolkit
- CMake cross-platform build system
 - CDash, CTest, CPack, software process tools
- Resonant/Girder informatics and information visualization
- Kiwi & VES mobile visualization
- IGSTK, CTK, vxl, Open Chemistry Project, VolView, tubeTk, and more...
- **MIDAS** for computational scientific research, testing, and visualization

ware



Computer Vision at Kitware

Object and Building Recognition by Function (DARPA)

- ≻ 25+ team members
- 12 PhDs
- ⋟ Founded in 2007
- ⊳ 35+ contracts

Dr. Anthony Hoogs anthony.hoogs@kitware.com 518-881-4910

resolved 3D reconstruction (DARPA) vare

Kitware

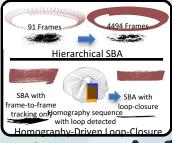
Normalcy Modeling and Anomaly Detection (DARPA PANDA and PerSEAS)

KWIVER.org

Kitware Image and Video Exploitation and **Retrieval Toolkit**

An Open Source, production-quality video analytics toolkit

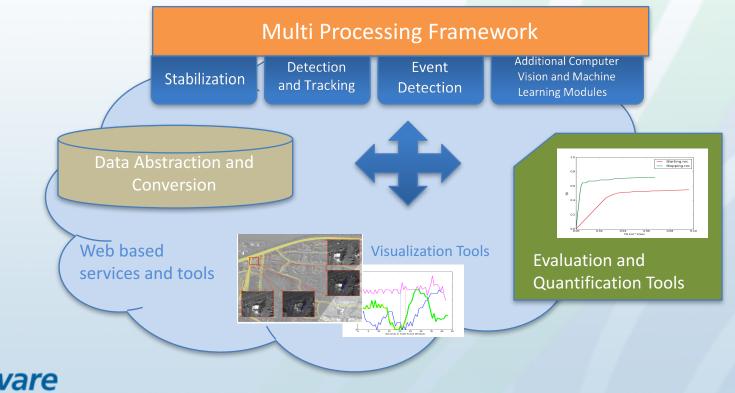
Streaming FMV


Social Multimedia Query ToolKit

VIBRANT: Video and Image-Based Retrieval and Analysis Toolkit

Archive Query

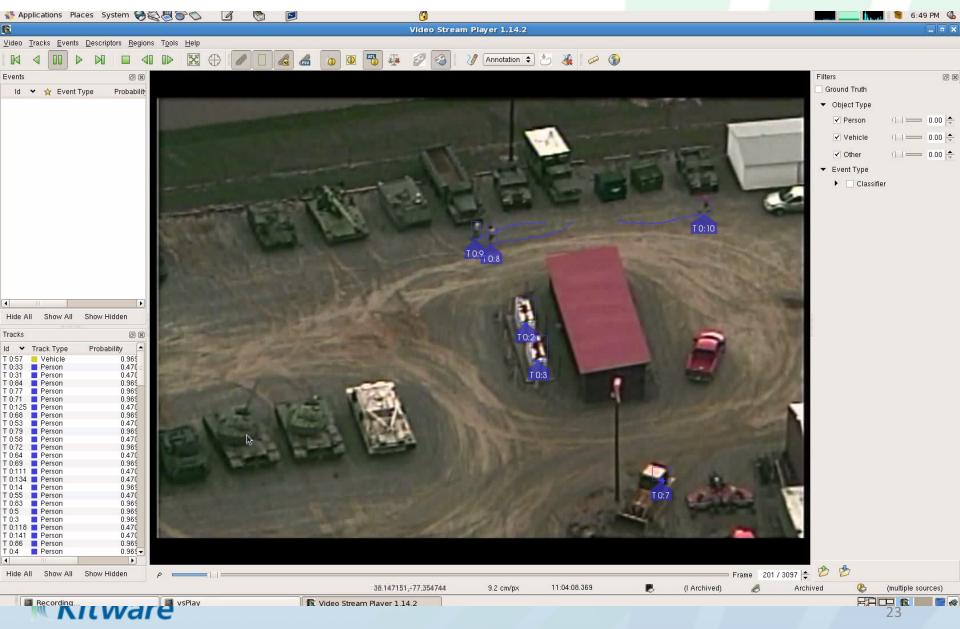
Motion-imagery Aerial Photogrammetry Toolkit



We hope to establish an opensource community for video analytics research and development

Enables Video and Image Exploitation Systems

- Provides high quality implementations of key computer vision and machine learning techniques targeted at real-world problems (MAP-Tk, SMQTK, VIAME)
- Provides software engineering libraries for multi-processing, pipeline based computation, dependency management and more (SproKit, Fletch, WorkQL)



KWIVER.org

- Source code repositories maintained at GitHub
- Current toolkits available:
 - Motion-imagery Aerial Photogrammetry Toolkit for video stabilization and online bundle adjustment MAP-TK
 - Social Multimedia Query Toolkit for visual context extraction and querying for social multimedia SMQTK
 - Stream Processing Toolkit to facilitate multi-state, pipelined processing of data streams Sprokit
 - Common data structures and abstractions for computer vision and machine learning systems VITAL
 - GPU acceleration of core vision algorithms using OpenCL VisCL
 - GUIs and sophisticated visualization tools for content automatically extracted from video, based on VTK ViVIA
 - Detection and tracking of movers in video VIBRANT
 - CMake tools to set up complex build environments and dependencies
 Fletch

VIBRANT Tracking

VIBRANT Querying

Operational Impact:

•

query

Two rounds of

• 1675 tracks

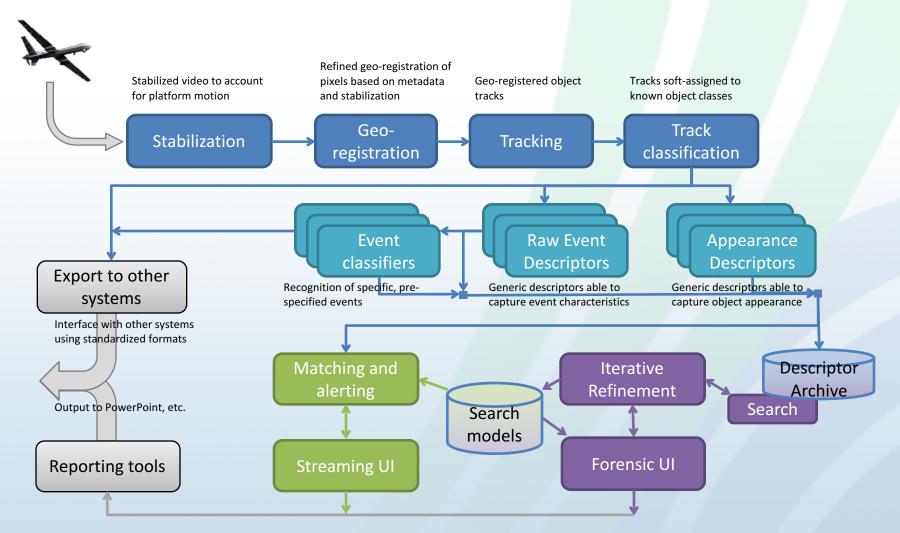
1095/166

surrogate video

people/vehicle

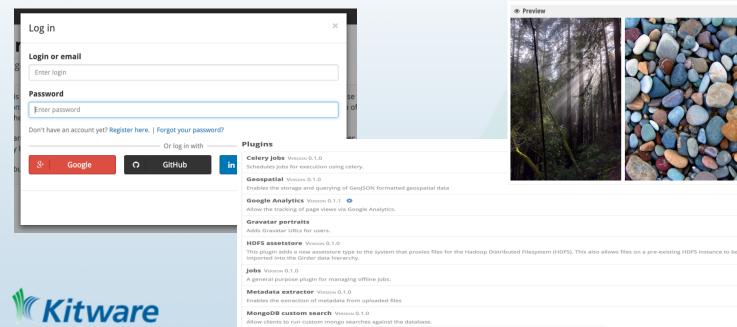
- Rapid search/retrieval from archives *during real-time video exploitation*
- Operator interaction and on-the-fly learning to achieve best results

Correct


Returned Clips

False Alarm

Uncertain

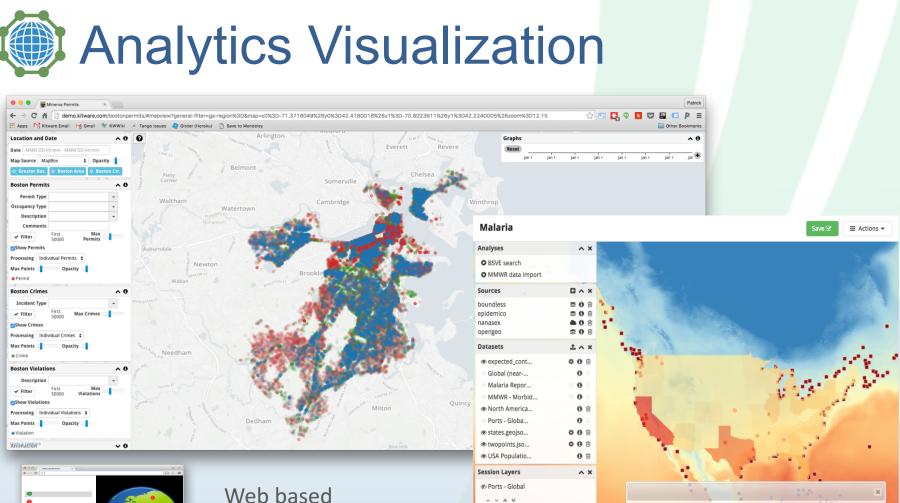

Video Analytics Architecture

Kitware

- Data organization and dissemination
- User management & authentication
- Authorization control
- Extensibility

admin admin / pictures	III, 12, 1
	i 🚨 🔒 💌
Immore pictures	A Private
buir woods.jpg	1.061 MB
E Pretty rocks.png	6.066 MB
	_
🛞 Metadata	•

OFF


OFF

OFF

Girder-worker: Job Tasking and Management

irder 🔍 🔍	Quick search	Pat	trick Reynolds 🗸
	Title	Last update	Status
Collections	 Ongoing Submissions submission: submission_54e4bb48cad3a55533264cd2_1440789593262 	August 28, 2015 at 17:01:45	Success
Users	 Ongoing Submissions submission: submission_54e4bb48cad3a55533264cd2_1440788429929 	August 28, 2015 at 16:02:47	Success
C	Ongoing Submissions submission: submission_54e4bb48cad3a55533264cd2_1440787806491	August 28, 2015 at 14:50:17	Inactive
Groups	Ongoing Submissions submission: submission_54e4bb48cad3a55533264cd2_1440787531519	August 28, 2015 at 14:45:43	Inactive
Admin console	Ongoing Submissions submission: submission_54e4bb48cad3a55533264cd2_1440786794407	August 28, 2015 at 14:33:25	Inactive
	Training Phase submission: submission_54e60bcdcad3a55533264f9f_1440786642601	August 28, 2015 at 14:31:14	Inactive
	Training Phase submission: submission_54e60bcdcad3a55533264f9f_1440784189681	August 28, 2015 at 14:26:40	Queued
	★ Training Phase submission: submission_54e60bcdcad3a55533264f9f_1440784189681	August 28, 2015 at 13:52:55	Error
	 Training Phase submission: submission_54e60bcdcad3a55533264f9f_1430249991452 	April 28, 2015 at 18:40:32	Success
		Title: Ongoing Submissions submission: submission_54e4bb48cad3a55533264c	:d2_1440789593262
	« Prev Page 1 Next »	Job ID: 55e0b463cad3a51dd8e65983	
		Status: 🗸 SUCCESS	
		Created: August 28, 2015 at 15:20:03	
		Scheduled start: August 28, 2015 at 15:20:03 Last update: August 28, 2015 at 17:01:45	
Compu	Itational Infrastructure Task Queue	Log output: Pulling docker image: girder/covalic-metrics:latest Running container with args:groundtruth=/data/groundtruth.zi Keyword arguments: { "auto_convert": false, "cleanup": true, "inputs": { "foundtruth": { "foider=Token": "vV5897Z4C020bekMzMIcce9XsY3arlBfQ8xdom },	
		<pre>"method": "GET", "medtod": "http", "url": "https://challenge.kitware.com/api/v1/folder/54e4b }, "submission": { "hadcrs": { "Girder-Token": "vV5897Z4C020bekMzMIcce9XsY3arlBfQ8xdom }, "method": "GET", "mode": "http", "url": "https://challenge.kitware.com/api/v1/folder/55e0b } },</pre>	nkCFEuQH1mrTvyDMMS2LOLtURx
	Girder-Worker	<pre>'jobInfo": { "jobInfo": { "headorn": { "Girder-Token": "0d7tzcYKA6Dt5KW4HVpYzFB0ZEZDy1vRNk0SxVTD }, "logPrint": true,</pre>	4011ew2FMjZr9eVnFrqdYO6h"
Kitwa	re	"method': "PUT", "url": "https://challenge.kitware.com/api/v1/job/55e0b463ca	d3a51dd8e65983"

0----

ø Report

~ ~ * *

🕫 Malaria Report

\$2015-12-14 19:00 UTC

~ ~ * *

MMWR - Morbidity and Mortality Weekly

Global (near-surface) Air Temperature -

Web based visualization leveraging GeoJS and other Open Source visualization toolkits

UNCLASSIFIED

Tile data © OpenStreetMap contributors

Dataset MMWR - Morbidity and Mortality Weekly Report

31 4446° N

97.8700° W

Latitude

Longitude

habesiosis cum 2014

babesiosis_cum_2015

campylobacteriosis_cum_2014 38

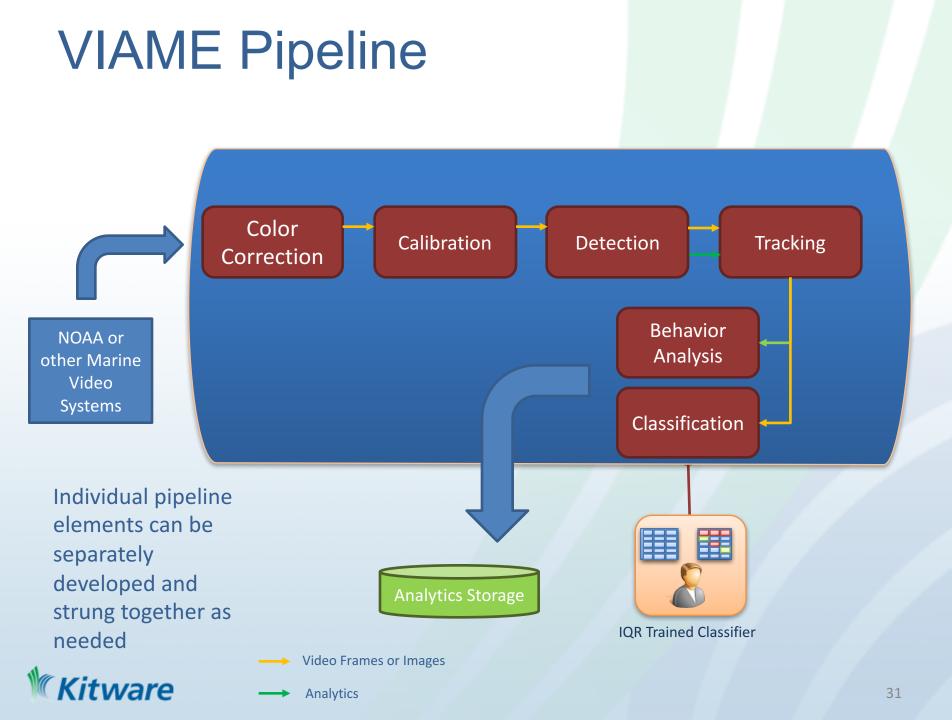
campylobacteriosis_current_week 855

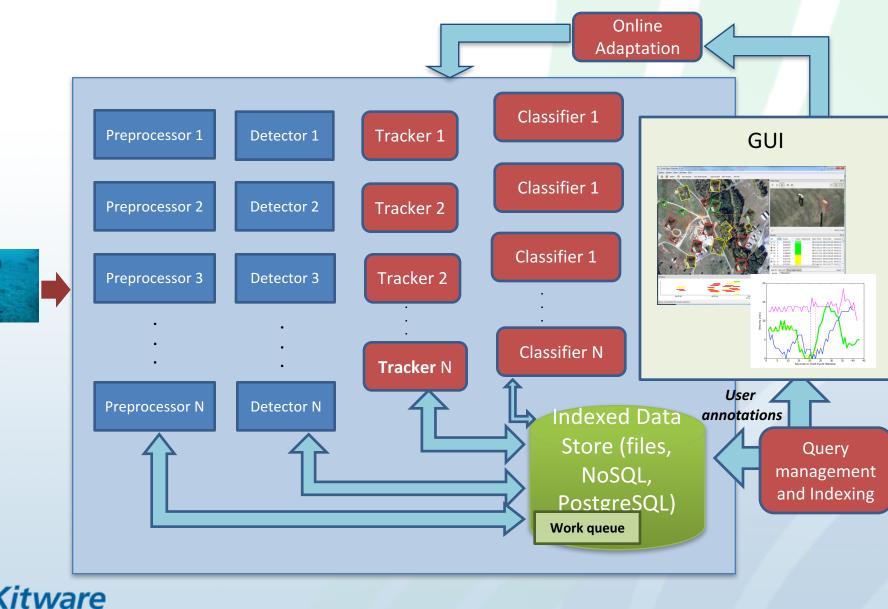
campylobacteriosis_cum_2015 42378

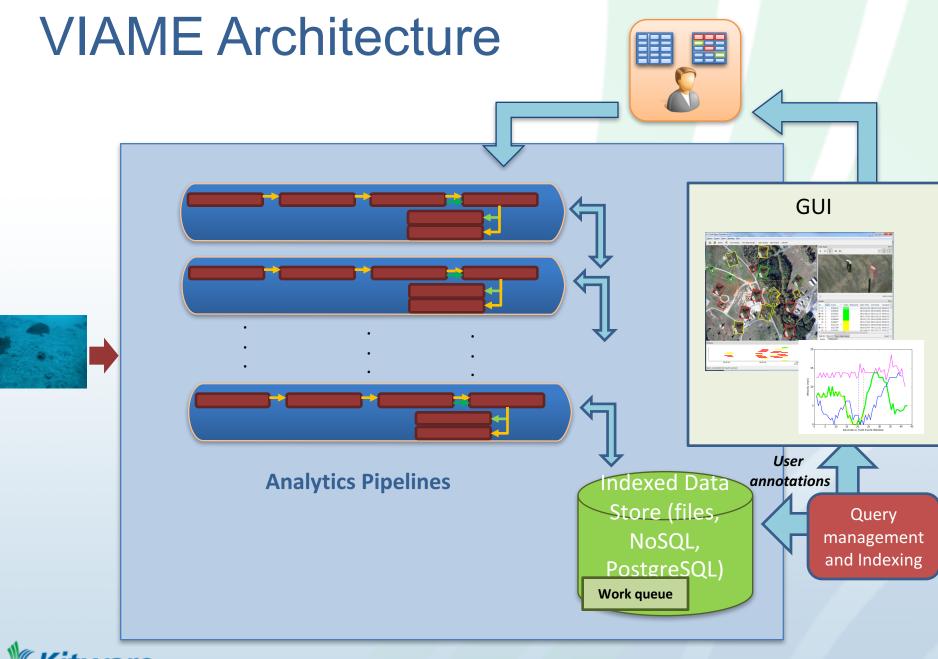
babesiosis_previous_52_weeks_max babesiosis previous 52 weeks med

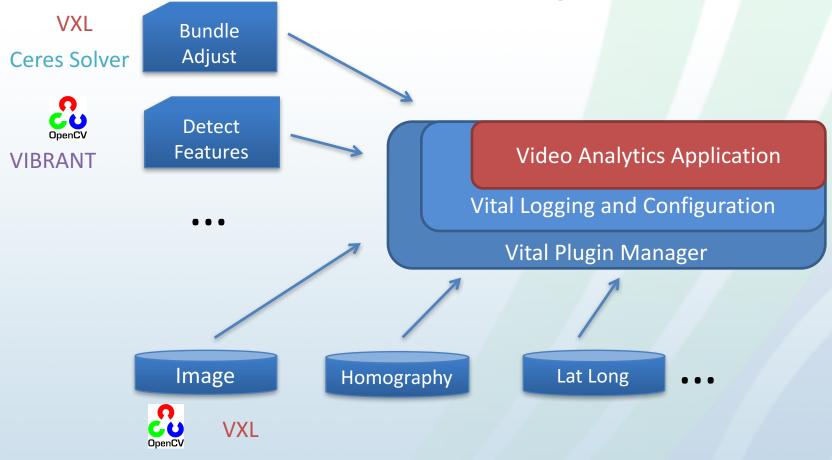
abbr

Topics


- Open-source software at Kitware
- KWIVER
- VIAME Common Processing Environment
- Additional KWIVER Capabilities

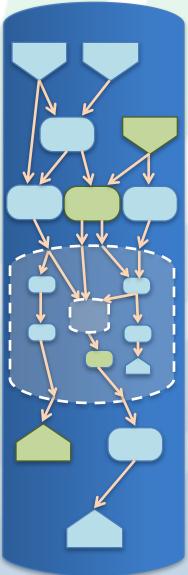

VIAME Common Programming Environment (CPE)


- Normalize and standardize data structures to facilitate integration
- Isolate system integration issues by providing test fixtures for remote development
- Encourage collaboration by providing a framework for data sharing and replay
- Encourage modular development with pipeline based architecture
- Leverage existing KWIVER and other Open Source Toolkits



VIAME Architecture

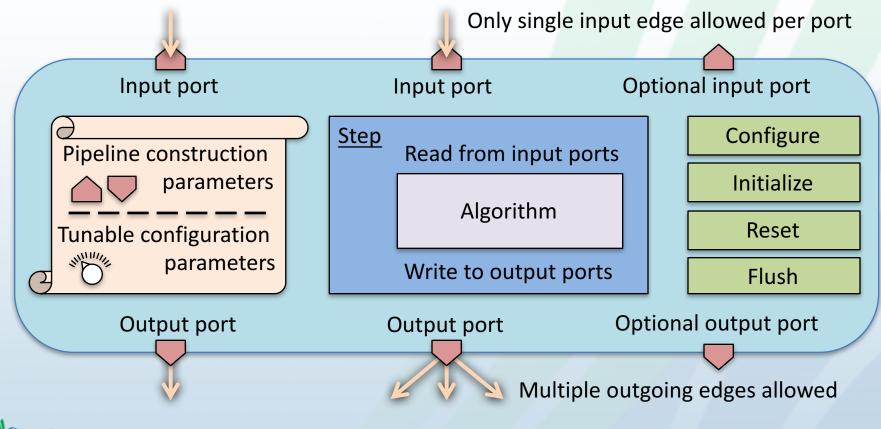
Provides abstractions for algorithms and data types along with core services such as logging and configuration to help build cohesive systems. Many choices can be configured at *runtime*.

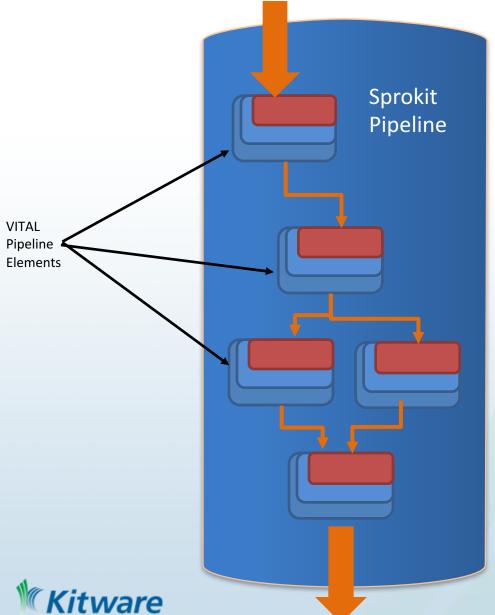


Kitware

VITAL

Sprokit – A Framework for Streaming Data Processing

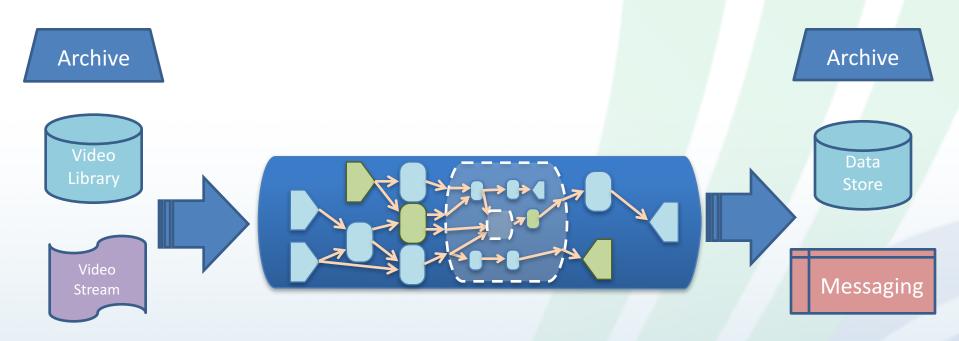

- What is Sprokit?
 - Plugin-based streaming data processing engine on which to build modular streaming data processing applications (especially video processing applications).
- What does Sprokit do?
 - Chains processing elements into a directed acyclic graph (DAG)
 - Executes a constructed pipeline on streaming data (e.g. video)
 - Manages data dependencies, flow, and synchronization
 - Distributes and balances processing load over CPU cores
 - Provides dynamic construction/configuration via configuration files
 - Allows reuse of preconfigured clusters of processes
 - Supports algorithms written in C++ and Python
 - Extends to custom processes, data types, and schedulers via plugins
- Why was Sprokit developed?
 - To build complex streaming algorithms from simple components
 - To replace an older, much more restrictive, pipeline framework
 - Because existing open source frameworks (e.g. Gstreamer, Ecto, etc.) did not meet all requirements in the list above.


Anatomy of a Sprokit process

- User constructs a process by
 - Inheriting from C++ or Python base class
 - Calling functions in the constructor to define ports, configuration parameters, etc.
 - Overriding a virtual <u>"step" function to read/write data from ports and run the algorithm</u>
 - Optionally overriding other virtual functions to add more advance behavior

M Kitware

VITAL and Sprokit



Taken together, VITAL and Sprokit provide the basis for a modular, dynamic environment for the development of a wide variety of video analytics systems.

Additional data types and data flows can be defined for domain specific efficiency as for video analytics in a marine environment.

Configurable pipelines and pluggable processing elements provide the most flexibility possible when developing a system.

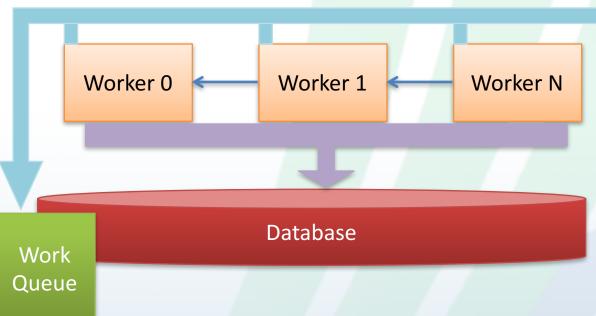
Front Caps and End Caps

Camera API

End caps and front caps isolate pipeline elements from integration requirements. Data from a variety of input sources is normalized, analytics are sent to a variety of destinations. Processing elements merely consume their inputs and produce their outputs.

Video Stream

Kitware 🕅


Archive Caps

Archive caps facilitate experimentation, remote development and collaboration. Pipeline data can be archived, transmitted and replayed later.

WorkQL – A Library for Multi-processing Synchronization

- Processing Dependency:
- Synchronization requests:
- Intra-worker data flow:

- Work can be divided across compute nodes
- Workers request next available data based on the productivity of their dependents
- Tasking stored in database for later replay and forensic analysis

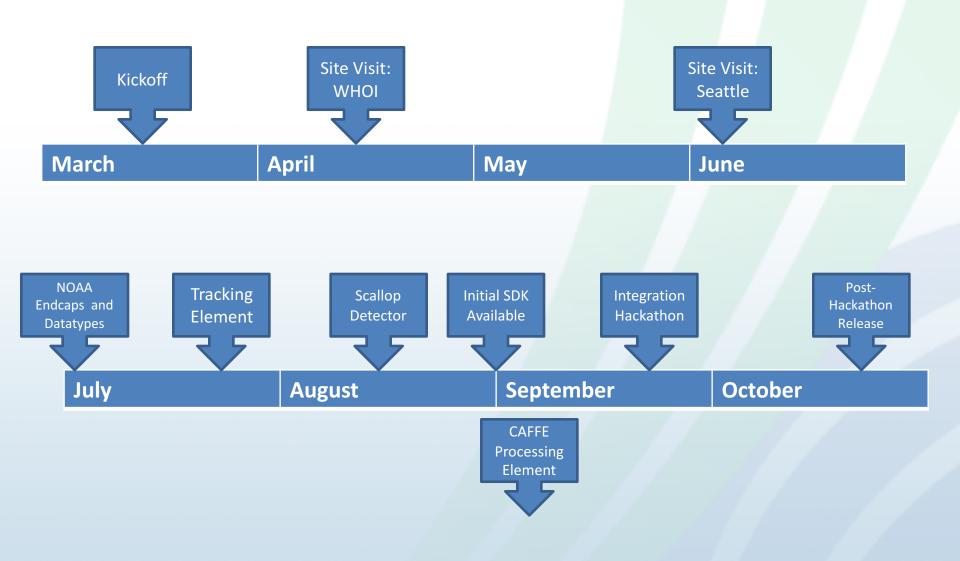
Fletch – A Computer Vision Tool Chest

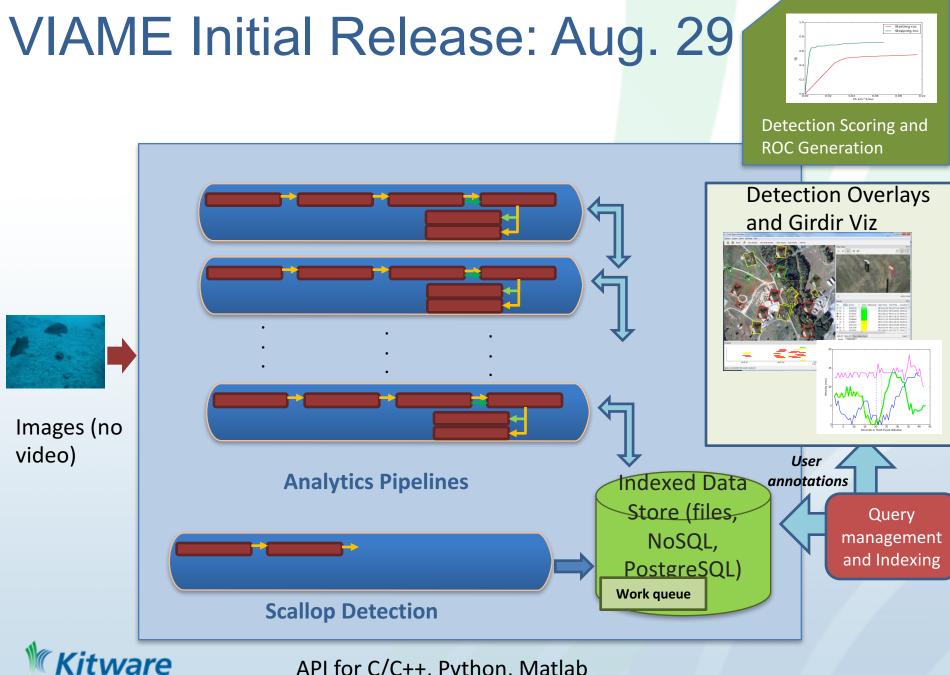
Fletch uses CMake to fetch, configure and build a variety of Open Source Computer Vision, Machine Learning and C/C++ libraries, easing the set up of a KWIVER development environment

Fish Counting and Assessment

https://www.youtube.com/watch?feature=player_detailpage&v=wvMXhHwjB6Y

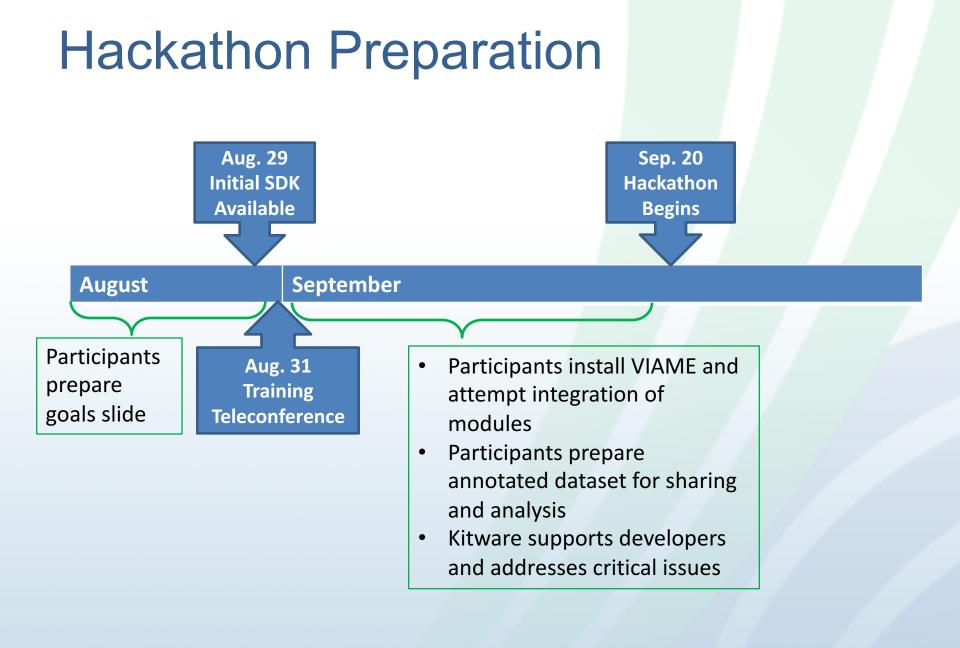
NOAA problem directly plugs into existing pipeline


Algorithms are similar but different



https://www.youtube.com/watch?v=kAbEzakam3Y& feature=player_detailpage

Schedule & Milestones



API for C/C++, Python, Matlab

VIAME Hackathon

- September 20-23, 2016 at NOAA in Seattle
- Goals
 - Integrate detection modules to access VIAME scoring, ROC generation and data analysis tools
 - compare different algorithms doing same problem, e.g. multiple scallop detectors
 - Run integrated modules on data from other groups
 - Integrate multi-stage pipelines combining modules from different groups
 - E.g. color correction from A used by detector from B; detection from A feeds into classification from B.
 - Train and run deep learning (Caffe) detectors on existing annotated datasets through VIAME-Caffe interface
- Expecting 13+ participants from Alaska FSC, SW FSC, WHOI, U Washington, U Victoria, MBARI, LANL, SRI

MKitware

VIAME in 2017

- Video processing
- Stereo processing

 Calibration
 - Dense 3D reconstruction
- Anomaly detection and clustering
- Habitat classification
- Extend analytics and visualization
- Full Matlab interfaces
- Extend deep learning integration
- Database extensions