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Abstract

As a multi-billion dollar industry, scallop fisheries
world-wide rely on maintaining healthy off-shore popula-
tions. Recent developments in the collection of optical im-
ages from extended areas of the ocean floor has opened the
possibility of assessing scallop populations from imagery.
The shear volume of data — upwards of 20,000 images per
hour — implies that automatic image analysis is necessary.
This paper presents a computer vision software system to
identify and count scallops. For each image, the system
generates initial candidate regions of potential scallops, ex-
tracts image features in the candidate regions, and then ap-
plies one of several different trained Adaboost classifiers
to determine the strength of each region as a scallop. In
making the final classification decision, the strength of the
scallop classifier output is compared to the output of other
classifiers trained to detect sand dollars, clams and other
“distractors”.

1. Introduction

Recent advances in hardware, software and camera sys-
tems, together with the growing need to protect indige-
nous species, have stimulated development of new meth-
ods for environmental monitoring via imagery and video
[10, 11, 17]. The protection of scallop populations is of par-
ticular importance to regional economies around the world,
including parts of Japan, China, the United States, and
Canada. In order to prevent over-harvesting, fisheries may
be restricted to certain quotas or confined to operating in
certain regions. The traditional method of sampling the
scallop biomass and thereby deciding which areas should
be open for harvest is based on dredging. The recent and
growing availability of optical images of the ocean floor
raises the possibility of replacing dredging with computer
analysis of optical imagery to detect and count scallops, and
determine their biomass. Developing the core scallop detec-
tion method is the goal of this paper.

Images are collected by the Habitat Mapping Camera
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Figure 1. The Habitat Mapping Camera System (HabCam) II.

System, HabCam 1II, developed and operated by the Woods
Hole Oceanographic Institution and members of the Hab-
Cam Group (Figure 1), which is towed by a fishing trawler
at heights of 1-3m above the ocean floor. The optical sub-
system of the HabCam II includes a digital camera taking
1280 by 1024 resolution images at 5-6 frames per second.
The camera is surrounded by 4 strobe lights to provide ar-
tificial lighting as the probe frequently operates at depths
exceeding 50 meters.

1.1. Challenges for Scallop Detection

A successful scallop detector must address several chal-
lenges, as illustrated in Figures 2 and 3. In particular:

e The strobe lighting system produces images having
a non-uniform illumination, while the attenuation of
light in the seawater results in weakly-colored images.
Moreover, water conditions may sometimes reduce the
image contrast to a level where individual scallops lack
clearly defined boundaries.

e Scallops may be white, brown or some combination
thereof, and they have a wide range of textures. Less
commonly, their shells can take on other hues.

e Scallops may be partially buried by sediment or oc-
cluded by other scallops or different organisms. Typ-



Figure 2. Examples of live scallop appearances. As shown, scal-
lops can appear with a wide variety of color and texture patterns.
They are often highly occluded by other organisms and sediment.

Figure 3. Related objects with similar appearances and sizes when
compared to scallops. From left to right, a sand dollar, 2 clams, an
urchin, and a brown rock.

ically, a buried scallop will still produce a visible
boundary because its filtration will reduce the amount
of sediment from the top and the sides of its shell.

e While the typical scallop shape is circular with a hinge
on one side, swimming scallops are often seen edge-
on, and partially buried scallops may show no hinge.

e Shells of dead scallops look like live scallops. Dead
scallops may be identifiable by cracks in their shell,
by atypical coloring, or by sediment appearing in the
inner shell.

e Many objects have similar appearance to scallops, in-
cluding sand dollars, clams, urchins and even rocks
(Figure 3). Sand dollars and urchins often have radial
symmetric textured patterns, while scallops have ring
patterns originating at the hinge.

e Scallops commonly appear in a variety of benthic en-
vironments, including sand, rock and mud.

1.2. Prior Work

Several previous papers have described methods for scal-
lop detection and counting. The published techniques are
generally tailored for constrained sets of data. For example,
Enomoto, et al. [6] extract features to describe the fluted
pattern particular to bay scallops. Most of our data shows
Atlantic sea scallops, and we must address a wider range
of appearance variations. The work of [7] is specialized
to detecting scallops in a sandy environment. The authors
use a Hough transform to identify ellipses in grayscale im-
ages, which are then filtered based on nearby grayscale in-
tensities close to the detected ellipses. The architecture of

this approach is similar to that of ours, but the challenges
imposed by our data imply that more sophisticated interest
point detection and image feature measurements are neces-
sary. Gabor wavelets, texture energy gradients, and an SVM
classifier are used in [9, 17] to segment and identify a vari-
ety of organisms, including scallops, but these studies were
troubled by high false positive identifications for scallops.

The vast computer vision literature on object recognition
can be roughly divided into the problems of (a) instance
recognition, where the same object (e.g. a building) is rec-
ognized in multiple images [1, 13, 14], (b) category recog-
nition, where the image is labeled according to its dominant
category (horse, car, wagon, etc.) [3, 20], and (c) object de-
tection, where examples of a certain object, often a face, are
found by scanning the image and testing each location for
the presence of the object of interest [19, 4]. Our work sits
solidly in this latter category.

1.3. System Overview

Although our approach is primarily based on the object
identification paradigm, like a number of recent segmen-
tation algorithms (e.g. [2]), our technique generates initial
candidate identifications of potential scallops (and distrac-
tor objects) in each image, and then tests these candidates
using a sophisticated set of image measurements and trained
classifiers. Our system includes the following components:

1. Hlumination and color correction is applied to each
image. A substrate category (sand, gravel, mud, etc.)
is also optionally selected by the user to aid in classi-
fier selection.

2. Initial image filtering and histogram formation: Sev-
eral transformations are applied to each input image,
some as simple as gray scale or color space mappings.
More involved transformations use gathered statistics
on color frequencies on a per image basis and on a
per object (white scallop, brown scallop, sand dollar,
etc) basis. These are used to generate new images that
reflect the likelihood of a particular color occurring
within an image and to generate empirical probabilities
of a particular color arising from a particular object.

3. Candidate region detection: Four different interest op-
erators are applied to the filtered images to generate
candidate locations and associated regions that might
be a scallop or might be one of the distractors. Each
detector is introduced to handle particularly challeng-
ing cases of scallop appearance.

4. Feature extraction: A variety of color, texture and edge
features are extracted for each candidate region.

5. Classifiers: A series of cascaded Adaboost classifiers
are applied to the feature vector extracted for a can-



didate region. Each classifier is specialized to a par-
ticular object — white scallop, brown scallop, buried
scallop, dead scallop, sand dollar, clam, etc. — and
sometimes to a particular substrate. The outputs of the
classifiers are combined into a final classifier that de-
termines the final label for the region.

These methods are described in the following sections.

2. Illumination and Color Correction

Each image is corrected on a pixel-by-pixel basis by di-
viding each intensity by the learned long-term average for
that particular pixel location, color channel, and HabCam
sled height (obtained from metadata).! Interpolation is ap-
plied between heights to obtain accuracy. All subsequent
processing is applied to these corrected images.

3. Initial Image Transformations

Multiple transformations are applied to the illumination
and color-corrected input RGB image in order to create a
series of images used by one or more later operations. This
series includes:

e The RGB image itself, g, together with its grayscale
version, I, and its mapping to L*a*b, Iz.qxp-

e The magnitude, I,,,,4, and direction, I, of the gradi-
ents of I, computed using the Sobel operator.

e A “color commonality” image, /.., where each pixel’s
color is replaced by the likelihood of the color across
the entire image.

e A conditional probability image, I..,, for each object
of interest o (brown scallop, white scallop, sand dollar,
etc.) giving the probability of a pixel’s color condi-
tioned on the pixel being from object o.

Color commonality image, I.., is formed to address
problems in contrast in underwater images (see Figure 4).
An N x N x N color histogram (typically, we use N = 64
for the 12-bit Habcam images), H,.g, is formed from im-
age I,.45 and then smoothed with a 3-dimensional Gaussian
(0 = 1.0 bin). Pixel value I..(x) is entry H, 4 (Ig(x)) in
this histogram. Note that this is applied to each pixel sepa-
rately. Despite the non-uniformity of its space, RGB works
as well as L*a*b, so we use it for simplicity.

One instance of conditional probability image, I.p.,, is
computed separately for each object, o, to be detected. A
color histogram, H,, is initialized from the pixels in the
regions corresponding to object o in the manually-labeled
training images. This histogram is updated on-line based

'We thank Jason Rock and Peter Honig for their design, implementation
and refinement of this algorithm.

Figure 4. Example color commonality images (I..) are shown on
the right. In this diagram, brighter intensities in I.. correspond
to less frequent colors in the original image. Because the color of
the background is relatively consistent, foreground objects become
more salient.

on detections gathered when running the software on a Hab-
Cam image sequence. For the update, if at least one instance
of object, o, (a white scallop, for example) is detected in a
new image, then that image’s pixels from all detected white
scallops are used to form a new N x N x N histogram,
which is then merged into the existing H, with a given
weight (0.03). The resultant histogram is renormalized to
have a cumulative weight of 1. A histogram, Hy, is formed
similarly for the background from the training data and on-
line image regions where none of the objects are detected.
The value given to each individual pixel in I.,.,(x) is the
difference between the object and background histograms,
ie.
Lepio(x) = Ho(Irgb(x)) — Hig(Irgn(x))

Note that when this value is 0 a pixel is equally likely, based
on its color alone, to be object (e.g. white scallop) or back-
ground. Finally, we aggregate over all objects of considera-
tion o to generate the final image:

Iep(x) = max Lep,o(x)
o

4. Candidate Detection

After computing the initial image transformations, four
different techniques are applied to detect candidate object
regions. Each candidate is represented by a S-parameter el-
lipse specifying the image location, orientation and axes.
While these techniques seem somewhat redundant, the ex-
perimental results presented below clearly show the im-
proved results obtained when using all four.

4.1. Difference of Gaussian Peaks

The first detector extracts difference-of-Gaussian peaks
in image position and in scale space, following the tech-



nique described in the original SIFT paper [12]. If o is
the detection scale, then the initial ellipse for this candi-
date is a circle of radius \/50. The range of scales to search
is established by physical considerations using known scal-
lop sizes, camera calibration parameters, and metadata that
records the height of the camera above the ocean floor.
Early in a HabCam collection sequence, this “blob detec-
tion” is applied to the generic color commonality image /...,
but once /., has been become sufficiently stable — e.g. af-
ter n = 10 images with detections of any objects of interest
— the computation switches to use I.,. The blob detection
method does well at detecting the standard general case of
objects (scallops) where the entire shell is showing, but also
does well with cases that may lack clearly defined edges due
to water turbidity. Example results are shown in Figure 5.

4.2. Adaptive Thresholding

Adaptive thresholding is similarly applied to I.,, start-
ing with a threshold of 0 — as negative values indicate a
pixel is more likely to be background. An ellipse is fit to
each connected region in the thresholded image, and any
ellipse whose dimensions fall within the acceptable ranges
established by physical considerations is added to the list
of candidates. If there are too many small candidates, the
threshold is lowered by a certain percentile and the process
repeated. Conversely, if any candidate is significantly larger
than our upper object scanning size, the threshold is raised.
Example results are shown in Figure 6.

4.3. Template Matching

At each pixel location, x, a set of 16 one-dimensional
derivatives is computed at locations x + R(cos 6;,sin6;) T,
for directions 0; = 2mi/16, ¢ € {0,...,15} and circle
radius R (Fig. 7). The direction of the i" derivative is
(cos;,sin6;)T. A derivative is computed for each chan-
nel of Iy, and the results are combined at each location

Figure 5. Difference of Gaussian candidate points on /.

by taking the L, norm. In turn, these are combined at the
central pixel x by averaging all 16 responses and dividing
by the maximum, which emphasizes consistency and en-
sures that one derivative does not dominate. This is applied
at a fine sampling of R values — seven per octave — but
the computation is fast because we can precompute 16 1D
derivative images. As before, physical parameters deter-
mine the range of scales. Only a limited number of extrema
are reported as candidate points, by performing a window-
ing across the image and taking the top 5 candidates in each
window (see Fig. 8).

4.4. Edge Detection

Lastly, to provide another layer of redundancy and to bet-
ter handle cases near image borders, a Canny edge detector
is applied (Fig. 9), connected chains are extracted, and an
ellipse is fit to a downsampled version of each chain. Re-
sults are scored by the mean-square error of the chain edge
pixels to the ellipse. The top 40 results in the image are
reported as potential candidates.

4.5. Consolidation and Prioritization

These methods all have the potential to detect the same
object multiple times, so we need to apply a consolidation
step. Candidates are merged when their centers are within
10% of the average of their major axis lengths, when their
axis lengths are both within a 20% margin of each other,
and when their orientation difference is less than 30°. Can-
didates are then ranked in a single priority queue based
first on whether or not the candidate was detected by multi-
ple detectors, followed by interleaving the top results from
each detector based on their respective detection magni-
tudes. This ordering allows us to set a limit on total pro-
cessing time by controlling the final number of candidates.

Figure 6. Adaptive thresholding candidate points.



Feature Set Number of Features | Description
Edge-Based Properties 137

Candidate Point Properties 9

Histogram of Oriented Gradients | 3528

Raw Color-Based Features 122

Gabor Filtering 30

Color gradients and measures of smoothness around an estimated candidate contour

Ellipticity, size of axis in real units, ratio of axis lengths.

HoG descriptors calculated on I, and “saliency” image I around each candidate

Properties derived from L*a*b, RGB and I, extracted from 32 different regions around candidates
Smoothed output of various Gabor filters applied to different regions around candidates

Table 1. Overview of extracted features. Not every feature is always used in the resultant learned classifiers.

Figure 7. The 16 derivative locations and directions for template
matching.

5. Features Extracted for Candidate Points

The rank ordered candidate points must be classified
as one of several types of scallops (brown, white, buried,
dead), distractors (sand dollars, clams, etc.), or background.
In order to do this, a vector of features is computed for each
region as input to a set of classifiers. These features are
generic in the sense that they are not specific to a particular
object type, making the feature computation — the most ex-
pensive operation overall — independent of the number of
classifiers. The features forming this 3832 component vec-
tor are summarized in Table 1. They are designed to cap-
ture shape, color and texture properties, and are computed
as follows.

The first set of measures is computed from a piecewise
— and potentially open — contour extracted near the re-
gion boundary. To compute this contour, each pixel within
a small distance of the elliptical candidate region boundary
is assigned a weight based on (a) the distance to the bound-

Figure 8. Template approximation candidate points from I «qxb.

ary, (b) the angle between the intensity gradient and the di-
rection to the region center, and (c) the gradient magnitude.
Local maxima with the highest weights in each radial direc-
tion from the region center are then selected, and the result-
ing “edge” points are linked into one or more chains. Each
chain is weighted as the sum of the edge weights that form
it. A partial contour is created for the candidate by select-
ing the linked chains with the highest weights to be a part
of this contour, stopping the selection process when there is
at least 1 edge pixel in each of 4 quadrants surrounding the
candidate point (Figure 10).

This partial contour is used as the basis for extracting the
following boundary contour features: (a) the mean-squared
error between the contour points and an ellipse fit to the
points, (b) the average color in the region near the contour
boundary, and (c) the average color first and second deriva-
tives in the direction from the two highest-weighted edgel
chains toward the center of the candidate region. To com-
pute (c), each pixel in the entire contour is shifted a dis-
tance of 1 pixel towards the center of the candidate, the av-
erage L*a*b color for the shifted contour is calculated, and
the process repeated for several iterations. Sampled fairly
densely, the difference between the average colors (com-
puted at each iteration) are reported as the primary color
gradient features.

The second feature set includes nine properties of the
elliptical region, converted to physical units (meters) us-
ing the camera and sled metadata. This includes the axis
lengths and their ratio, the ellipse perimeter and area, and

Figure 9. Edgel candidate points from /.



Figure 10. Examples of extracted edges for valid scallop candi-
date points (left) and non-candidate points (right). The left sub-
columns show the original candidate point, and the right the esti-
mated contour (blue) and estimated ellipse (green)

the percentage change between the initial candidate point
axis lengths and the revised estimation from the prior step.

Figure 11. The 32 regions (16 inner, 16 outer) used for the raw
color descriptor centered on each candidate.

Third, a 32-bin color descriptor is formulated as shown
in Figure 11 comprised of 16 inner bins (within the can-
didate boundary) and 16 outer bins. The inner and outer
groups each contain two concentric rings of eight bins, and
four values are computed for each bin: the three-component
average L*a*b value and the percentage of pixels with a
positive I, value. 64 of these values (the L*a*b and I,
averages of the inner bins) are reported directly as part of
the size 122 color descriptor. The remaining 58 features are
computed from various aggregates across multiple bins in-
cluding: the difference in values of all of the inner boundary
regions with those of their direct (outer) neighbors, averages
of the values of all inner regions combined, and the differ-
ence in values of the combined inner region average with a
combined average over all outer regions.

Fourth, in order to extract both textural and shape in-
formation, two Histogram of Oriented Gradient descriptors
are created in the style of [4], centered on each individual
candidate. The 1764-bin descriptor is computed once for
the grayscale input I, and again for the color commonal-
ity image I... The latter is most important for input images
with very low contrast. Overall, the HoG descriptors aid
in classifying the scallop circular shape and in differentiat-
ing between the texture patterns on different organisms (e.g.
scallops vs. sand dollars).

Finally, to complement the textural cues of the HoG
descriptors, the responses of an array of multiple scale-
normalized Gabor filters are measured at different points
around the center of each candidate at 5 locations (at the

candidate center and the 4 corners of an oriented cross
pattern extending halfway towards the candidate boundary
from the center of the candidate). Only the real magnitude
of the Gabor filter outputs were used as features. The exact
selection of Gabor filters was performed via manual tuning.

6. Classifiers and Training

Following computation of the features in a candidate re-
gion, a decision is made about whether the region is a scal-
lop (white, brown, dead), a sand dollar, a clam, another
distractor object, or nothing at all. This decision is made
by combining the results of a set of Adaboost classifiers
[8, 15] running on two levels. The first level, designed to
eliminate as many false positives as possible without in-
troducing many false negatives, contains a one-versus-all
classifier for each object of interest. Candidates that have
a positive response for one of the object classifiers are fed
into the second stage. The second stage contains additional
classifiers, including both one-vs-all classifiers and one-vs-
one classifiers for comparing particular objects against each
other (e.g. white scallop vs. sand dollar). The strongest ob-
ject response among these is converted to a probability and
then thresholded.

Each individual classifier in the entire system was trained
via Real AdaBoosting [16, 18], for up to a set number of
iterations on top of decision stumps or short decision trees
of fixed length. In order to focus the training, the output of
the candidate detectors was manually annotated as to both
object category and localization of the region on the object.
Poorly-localized object regions were not used as positive
instances during training.

Following the two level classification, if any remaining
candidates overlap in area by more than 60%, the one with
the lowest classification value is eliminated. Additionally,
to leverage the fact that sand dollars and scallops often oc-
cur in clusters, if we last detected an image that contained

Figure 12. Examples of final detections, after all filtering.



Data Set Classifier Detection | Precision Counting
Type Rate Error
200806280310 General 94.15 98.77 -4.68%
Specialized 94.19 94.74 -0.58%
200906290000 General 69.14 96.28 -28.19%
Specialized 88.40 99.07 -9.12%
200906290130 General 87.07 92.42 -5.78%
Specialized 92.04 90.29 +2.34%
200903161650 General 78.26 90.00 -13.04%
Specialized 88.29 98.80 -10.64%

200811112040 General 84.21 28.07 +200.00%
Specialized 60.87 66.67 -8.70%
201008210220 General 85.71 88.00 -2.60%
Specialized 94.64 86.89 +8.93%

Table 2. Results on a number of different cruises with a general-
purpose scallop detector and a scallop detector specialized to the
benthic substrate that is pre-dominant in an image.

Candidate Point Detection | Precision | Counting
Detectors Rate Error
Difference of Gaussian (DoG) 68.68 98.43 -30.60%
Filtered Canny Edges (FCE) 37.36 98.55 -62.09%
Template Approximation (TA) 73.22 98.53 -25.68%
Adaptive Threshold (AT) 60.65 99.10 -38.80%
DoG + TA 80.43 99.33 -18.49%
FCE + AT 62.50 98.29 -36.41%
DoG + FCE + TA + AT 85.56 98.71 -15.21%
Table 3. Combined results on 20080628_0310 and 20090629_0000

with varied candidate point detectors enabled.

a large number of sand dollars, then the sand dollar clas-
sification value is scaled by a fixed factor. Differentiating
between buried sand dollars and buried scallops is one of
the most difficult sub-problems of scallop detection, and is
why special emphasis is placed on detecting sand dollars.

7. Experimental Results and Discussion

The detection algorithm was applied to image sets col-
lected from HabCam cruises over 2008-2010. These were
in different locations up and down the Atlantic seaboard.
In order to explore several aspects of this design, we have
gathered a variety of experimental results from these data
sets. We focus here primarily on the effectiveness of the
algorithm on scallops. For more details see [5].

The overall results are summarized in Table 2. Each in-
dividual image set, represented by two rows in the table,
is labeled by its date of collection. Each typically contains
several thousand images (for these experiments). Rows la-
beled “General” show the detection rate (Pd), precision, and
the percentage counting error for the described algorithm
across the entire data set. Rows labeled “Specialized” show
the results when the described algorithm is further special-
ized, in both training and testing, to the particular substrate
seen in each image — rocks, sand, mud, gravel, boulder, in
addition to image quality (sharp vs cloudy). Currently this
specialized labeling is done manually, but soon it will be
done automatically. All numbers are obtained by compar-
ing the results to those of a human annotator.

The results vary dramatically across the different
cruises. This occurs for a variety of reasons. Data set

20080628_0310 shows excellent results for both the gen-
eral and specialized algorithms, while 20090629_0130 and
20100821_0220 show good results in general and improve-
ments into the mid 90’s for the specialized algorithm. On
the other hand, data set 200811112040 exhibited a very
high false positive rate. The images in the data set include
very few scallops and a high number of distractor objects
such as rocks and shells. In addition, the image quality was
very low. Images from set 20090629_0000 were taken at
a much higher altitude — typically 3-4m about the ocean
floor rather than 1-2m, producing much smaller scallop re-
gions in the images (see Figure 13). It also has many oc-
clusions and a very high density of scallops.

Tables 3 and 4 explore various features of the algorithm
design. In particular, Table 3 shows the results on two image
sets with different candidate detectors enabled, while keep-
ing everything else in the system constant. In this experi-
ment the general classifiers were used. Clearly, the combi-
nation of the four detectors makes a significant difference.
We attribute this to both the low contrast of scallops and
their appearance variations across images. Table 4 details
the false positive rate per meters squared on a dataset rich
with distractor objects. Results are shown with classifiers
trained on both each individual feature set, and their union.
Their aggregate showed the highest discriminatory power
of the resultant classifiers.

Finally, we briefly consider the computation time in-
volved in our scallop detection algorithm. Not surprisingly
the feature extraction step requires more than 50% of the
total time. Since, on a Intel Quad-Core i7 processor with 4
Gb of RAM, the entire computation requires about 800 mil-
liseconds per image on a single core, when using all cores,

Figure 13. Mixed good (left) and poor (right) results from multiple
environments. Shown from left to right, top to bottom are gravel
(20090316-1650), mud (20100821-0220), shell (20090629_-0000),
and rocky (20081111-2040) environments.



Feature Set Detection | Precision | False Positives
Rate (per m2)
Edge-Based Features 77.89 61.16 2.887
Candidate Point Properties 61.54 62.50 1.474
Dual HoGs 76.71 75.68 1.105
Color-Based Features 75.75 40.32 2.273
Gabor Filtering 24.18 73.34 0.491
All Features 85.56 98.71 0.122
Table 4. False positive rates on 200806280310 and

20090629_0000, with classifiers trained with different feature
sets enabled.

we obtain 10Hz throughput, allowing scallop detection to
keep up with the HabCam data collection rate.

8. Conclusions and Future Directions

We have presented a scallop detection system that is
based on a pipeline of initial image analysis, candidate ex-
traction, feature computation, and a two-level final classi-
fier. Effectively running at frame rate, it has shown strong
initial results on very challenging imagery. On reasonably
good quality data, its detection rate is in the mid 90s with
few false detections. Its performance drops on poorer qual-
ity data and data with very few scallops, where we often run
into previously unknown distractor categories.

Figure 14. Examples of false positives where the boundary of the
“scallop” is formed by other objects.

There are four major directions for further work. First
is a more detailed analysis of the algorithm configuration
and role of each processing step. Second is integration
with automatic substrate detection, allowing application of
specially-trained classifiers following the initial candidate
detection stage. Third is to remove false positives through
more comprehensive understanding of each image, elimi-
nating errors caused in part by the appearance of nearby ob-
jects (see Figure 14). This is quite important because both
the boundaries and interiors of buried scallops can be sub-
tle. Fourth is the evaluation of the system in the broader
context of trying to making fisheries policy decisions more
effectively and less invasive.
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